scholarly journals Bacteria coated cathodes as an in-situ hydrogen evolving platform for microbial electrosynthesis

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Elisabet Perona-Vico ◽  
Laura Feliu-Paradeda ◽  
Sebastià Puig ◽  
Lluis Bañeras

AbstractHydrogen is a key intermediate element in microbial electrosynthesis as a mediator of the reduction of carbon dioxide (CO2) into added value compounds. In the present work we aimed at studying the biological production of hydrogen in biocathodes operated at − 1.0 V vs. Ag/AgCl, using a highly comparable technology and CO2 as carbon feedstock. Ten bacterial strains were chosen from genera Rhodobacter, Rhodopseudomonas, Rhodocyclus, Desulfovibrio and Sporomusa, all described as hydrogen producing candidates. Monospecific biofilms were formed on carbon cloth cathodes and hydrogen evolution was constantly monitored using a microsensor. Eight over ten bacteria strains showed electroactivity and H2 production rates increased significantly (two to eightfold) compared to abiotic conditions for two of them (Desulfovibrio paquesii and Desulfovibrio desulfuricans). D. paquesii DSM 16681 exhibited the highest production rate (45.6 ± 18.8 µM min−1) compared to abiotic conditions (5.5 ± 0.6 µM min−1), although specific production rates (per 16S rRNA copy) were similar to those obtained for other strains. This study demonstrated that many microorganisms are suspected to participate in net hydrogen production but inherent differences among strains do occur, which are relevant for future developments of resilient biofilm coated cathodes as a stable hydrogen production platform in microbial electrosynthesis.

2016 ◽  
Vol 9 (1) ◽  
pp. 126-136 ◽  
Author(s):  
Dionisio H. Malagón-Romero ◽  
Alexander Ladino ◽  
Nataly Ortiz ◽  
Liliana P. Green

Hydrogen is expected to play an important role as a clean, reliable and renewable energy source. A key challenge is the production of hydrogen in an economically and environmentally sustainable way on an industrial scale. One promising method of hydrogen production is via biological processes using agricultural resources, where the hydrogen is found to be mixed with other gases, such as carbon dioxide. Thus, to separate hydrogen from the mixture, it is challenging to implement and evaluate a simple, low cost, reliable and efficient separation process. So, the aim of this work was to develop a polymeric membrane for hydrogen separation. The developed membranes were made of polysulfone via phase inversion by a controlled evaporation method with 5 wt % and 10 wt % of polysulfone resulting in thicknesses of 132 and 239 micrometers, respectively. Membrane characterization was performed using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), atomic force microscopy (AFM), and ASTM D882 tensile test. Performance was characterized using a 23 factorial experiment using the time lag method, comparing the results with those from gas chromatography (GC). As a result, developed membranes exhibited dense microstructures, low values of RMS roughness, and glass transition temperatures of approximately 191.75 °C and 190.43 °C for the 5 wt % and 10 wt % membranes, respectively. Performance results for the given membranes showed a hydrogen selectivity of 8.20 for an evaluated gas mixture 54% hydrogen and 46% carbon dioxide. According to selectivity achieved, H2 separation from carbon dioxide is feasible with possibilities of scalability. These results are important for consolidating hydrogen production from biological processes.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 703
Author(s):  
Severino Zara ◽  
Giacomo L. Petretto ◽  
Alberto Mannu ◽  
Giacomo Zara ◽  
Marilena Budroni ◽  
...  

The production of saffron spice generates large quantities of plant by-products: over 90% of the plant material collected is discarded, and a consideration fraction of this waste is plant stamens. This work investigated the chemical composition and the antimicrobial activities of the non-polar fraction extracted from four different saffron flower stamens. The chemical composition of ethereal extracts of the saffron stamens was qualitatively assessed by means of gas–chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) analyses. These analyses revealed ethereal extracts to possess a high polyunsaturated fatty acid content. In vitro antibacterial activity of stamen extracts showed no large differences between Gram-positive and Gram-negative bacteria in terms of minimal inhibitory concentration (MIC). In food matrix microbial analysis of the bacterial strains belonging to the main foodborne pathogen species, including Staphylococcus aureus DSM 20231, Escherichia coli DSM 30083, and Listeria monocytogenes DSM 20600, using low-fat UHT milk, revealed a statistically significant reduction in the number of cells (particularly for E. coli and S. aureus with a complete elimination of the population of the two target bacteria following incubation in diethyl ether extracts of saffron stamen (DES) at high concentrations tested, both at 37 °C and 6 °C (for 48 h and 7 days, respectively). A synergic effect was observed when the pathogens were incubated at 6 °C with DES. This work shows these by-products to be excellent sources of bioactive compounds, which could be exploited in high-added-value products, such as food, cosmetics, and drugs.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shan Wang ◽  
Aolin Lu ◽  
Chuan-Jian Zhong

AbstractAs a promising substitute for fossil fuels, hydrogen has emerged as a clean and renewable energy. A key challenge is the efficient production of hydrogen to meet the commercial-scale demand of hydrogen. Water splitting electrolysis is a promising pathway to achieve the efficient hydrogen production in terms of energy conversion and storage in which catalysis or electrocatalysis plays a critical role. The development of active, stable, and low-cost catalysts or electrocatalysts is an essential prerequisite for achieving the desired electrocatalytic hydrogen production from water splitting for practical use, which constitutes the central focus of this review. It will start with an introduction of the water splitting performance evaluation of various electrocatalysts in terms of activity, stability, and efficiency. This will be followed by outlining current knowledge on the two half-cell reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), in terms of reaction mechanisms in alkaline and acidic media. Recent advances in the design and preparation of nanostructured noble-metal and non-noble metal-based electrocatalysts will be discussed. New strategies and insights in exploring the synergistic structure, morphology, composition, and active sites of the nanostructured electrocatalysts for increasing the electrocatalytic activity and stability in HER and OER will be highlighted. Finally, future challenges and perspectives in the design of active and robust electrocatalysts for HER and OER towards efficient production of hydrogen from water splitting electrolysis will also be outlined.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3258
Author(s):  
Hamed M. Alshammari ◽  
Mohammad Hayal Alotaibi ◽  
Obaid F. Aldosari ◽  
Abdulellah S. Alsolami ◽  
Nuha A. Alotaibi ◽  
...  

The present study investigates a process for the selective production of hydrogen from the catalytic decomposition of formic acid in the presence of iridium and iridium–palladium nanoparticles under various conditions. It was found that a loading of 1 wt.% of 2% palladium in the presence of 1% iridium over activated charcoal led to a 43% conversion of formic acid to hydrogen at room temperature after 4 h. Increasing the temperature to 60 °C led to further decomposition and an improvement in conversion yield to 63%. Dilution of formic acid from 0.5 to 0.2 M improved the decomposition, reaching conversion to 81%. The reported process could potentially be used in commercial applications.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 891
Author(s):  
Ken-ichi Fujita ◽  
Takayoshi Inoue ◽  
Toshiki Tanaka ◽  
Jaeyoung Jeong ◽  
Shohichi Furukawa ◽  
...  

A new catalytic system has been developed for hydrogen production from various monosaccharides, mainly glucose, as a starting material under reflux conditions in water in the presence of a water-soluble dicationic iridium complex bearing a functional bipyridine ligand. For example, the reaction of D-glucose in water under reflux for 20 h in the presence of [Cp*Ir(6,6′-dihydroxy-2,2′-bipyridine)(H2O)][OTf]2 (1.0 mol %) (Cp*: pentamethylcyclopentadienyl, OTf: trifluoromethanesulfonate) resulted in the production of hydrogen gas in 95% yield. In the present catalytic reaction, it was experimentally suggested that dehydrogenation of the alcoholic moiety at 1-position of glucose proceeded.


iScience ◽  
2021 ◽  
Vol 24 (2) ◽  
pp. 102094
Author(s):  
Rusen Zou ◽  
Aliyeh Hasanzadeh ◽  
Alireza Khataee ◽  
Xiaoyong Yang ◽  
Mingyi Xu ◽  
...  

2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Jiang-Yu Ye ◽  
Yue Pan ◽  
Yong Wang ◽  
Yi-Chao Wang

Abstract Purpose This study utilized the principle that the bacteriorhodopsin (BR) produced by Halobacterium salinarum could increase the hydrogen production of Rhodobacter sphaeroides. H. salinarum are co-cultured with R. sphaeroides to determine the impact of purple membrane fragments (PM) on R. sphaeroides and improve its hydrogen production capacity. Methods In this study, low-salinity in 14 % NaCl domesticates H salinarum. Then, 0–160 nmol of different concentration gradient groups of bacteriorhodopsin (BR) and R. sphaeroides was co-cultivated, and the hydrogen production and pH are measured; then, R. sphaeroides and immobilized BR of different concentrations are used to produce hydrogen to detect the amount of hydrogen. Two-chamber microbial hydrogen production system with proton exchange membrane-assisted proton flow was established, and the system was operated. As additional electricity added under 0.3 V, the hydrogen production rate increased with voltages in the coupled system. Results H salinarum can still grow well after low salt in 14% NaCl domestication. When the BR concentration is 80 nmol, the highest hydrogen production reached 217 mL per hour. Both immobilized PC (packed cells) and immobilized PM (purple membrane) of H. salinarum could promote hydrogen production of R. sphaeroides to some extent. The highest production of hydrogen was obtained by the coupled system with 40 nmol BR of immobilized PC, which increased from 127 to 232 mL, and the maximum H2 production rate was 18.2 mL−1 h−1 L culture. In the 192 h experiment time, when the potential is 0.3 V, the hydrogen production amount can reach 920 mL, which is 50.3% higher than the control group. Conclusions The stability of the system greatly improved after PC was immobilized, and the time for hydrogen production of R. sphaeroides significantly extended on same condition. As additional electricity added under 0.3 V, the hydrogen production rate increased with voltages in the coupled system. These results are helpful to build a hydrogen production-coupled system by nitrogenase of R. sphaeroides and proton pump of H. salinarum. Graphical abstract


2008 ◽  
Vol 587-588 ◽  
pp. 778-782
Author(s):  
Marta Cabral ◽  
João C. Bordado ◽  
António Correia Diogo ◽  
Fernanda Margarido

The main purpose of the present study is to assess the usefulness of filter cartridges from end-of-life biological and chemical protection masks, for other applications (with increased added value) instead of landfill deposition. Filters with different ages up to fifty years, were dismantled and divided in their components. Physico-chemical characterisation of each filter cartridge component was performed using different techniques such as: optical microscopy, Fourier transform infrared spectroscopy, pyrolysis, particle size distribution by laser diffraction, surface area determination from the nitrogen adsorption isotherms at 77K, determination of open porosity by helium pycnometry, and dynamic mechanical thermal analysis in the temperature range from -100°C to 200°C. It is shown that the loss of resilience of the rubber sealant is the main factor that controls the shelf life of filter cartridges. On the other hand, most of the charcoal in the activated carbon cloth remains active and can be useful for other less severe applications such as the removal of dissolved components from freshwater and/or marine systems.


2021 ◽  
Author(s):  
Giorgia De Gioannis ◽  
Alessandro Dell'Era ◽  
Aldo Muntoni ◽  
Mauro Pasquali ◽  
Alessandra Polettini ◽  
...  

Abstract This study investigated the performance of a novel integrated bio-electrochemical system for synergistic hydrogen production from a process combining a dark fermentation reactor and a galvanic cell. The operating principle of the system is based on the electrochemical conversion of protons released upon dissociation of the acid metabolites of the biological process and is mediated by the electron flow from the galvanic cell, coupling biochemical and electrochemical hydrogen production. Accordingly, the galvanic compartment also generates electricity. Four different experimental setups were designed to provide a preliminary assessment of the integrated bio-electrochemical process and identify the optimal configuration for further tests. Subsequently, dark fermentation of cheese whey was implemented both in a stand-alone biochemical reactor and in the integrated bio-electrochemical process. The integrated system achieved a hydrogen yield in the range 75.5 – 78.8 N LH2/kg TOC, showing a 3 times improvement over the biochemical process.


Sign in / Sign up

Export Citation Format

Share Document