scholarly journals Wireless, miniaturized, semi-implantable electrocorticography microsystem validated in vivo

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Keivan Keramatzadeh ◽  
Ali Kiakojouri ◽  
Mohammad Sadegh Nahvi ◽  
Yousef Khazaei ◽  
Ali Feizi-nejad ◽  
...  

AbstractThis paper reports on the design, development, and test of a multi-channel wireless micro-electrocorticography (µECoG) system. The system consists of a semi-implantable, ultra-compact recording unit and an external unit, interfaced through a 2.4 GHz radio frequency data telemetry link with 2 Mbps (partially used) data transfer rate. Encased in a 3D-printed 2.9 cm × 2.9 cm × 2.5 cm cubic package, the semi-implantable recording unit consists of a microelectrode array, a vertically-stacked PCB platform containing off-the-shelf components, and commercially-available small-size 3.7-V, 50 mAh lithium-ion batteries. Two versions of microelectrode array were developed for the recording unit: a rigid 4 × 2 microelectrode array, and a flexible 12 × 6 microelectrode array, 36 of which routed to bonding pads for actual recording. The external unit comprises a transceiver board, a data acquisition board, and a host computer, on which reconstruction of the received signals is performed. After development, assembly, and integration, the system was tested and validated in vivo on anesthetized rats. The system successfully recorded both spontaneous and evoked activities from the brain of the subject.

2019 ◽  
Vol 9 (21) ◽  
pp. 4719 ◽  
Author(s):  
Shimwe Dominique Niyonambaza ◽  
Praveen Kumar ◽  
Paul Xing ◽  
Jessy Mathault ◽  
Paul De Koninck ◽  
...  

Neurotransmitters as electrochemical signaling molecules are essential for proper brain function and their dysfunction is involved in several mental disorders. Therefore, the accurate detection and monitoring of these substances are crucial in brain studies. Neurotransmitters are present in the nervous system at very low concentrations, and they mixed with many other biochemical molecules and minerals, thus making their selective detection and measurement difficult. Although numerous techniques to do so have been proposed in the literature, neurotransmitter monitoring in the brain is still a challenge and the subject of ongoing research. This article reviews the current advances and trends in neurotransmitters detection techniques, including in vivo sampling and imaging techniques, electrochemical and nano-object sensing techniques for in vitro and in vivo detection, as well as spectrometric, analytical and derivatization-based methods mainly used for in vitro research. The document analyzes the strengths and weaknesses of each method, with the aim to offer selection guidelines for neuro-engineering research.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4526
Author(s):  
Penghui Fan ◽  
Yilin Song ◽  
Shengwei Xu ◽  
Yuchuan Dai ◽  
Yiding Wang ◽  
...  

The detection of neuroelectrophysiology while performing optogenetic modulation can provide more reliable and useful information for neural research. In this study, an optical fiber and a microelectrode array were integrated through hot-melt adhesive bonding, which combined optogenetics and electrophysiological detection technology to achieve neuromodulation and neuronal activity recording. We carried out the experiments on the activation and electrophysiological detection of infected neurons at the depth range of 900–1250 μm in the brain which covers hippocampal CA1 and a part of the upper cortical area, analyzed a possible local inhibition circuit by combining opotogenetic modulation and electrophysiological characteristics and explored the effects of different optical patterns and light powers on the neuromodulation. It was found that optogenetics, combined with neural recording technology, could provide more information and ideas for neural circuit recognition. In this study, the optical stimulation with low frequency and large duty cycle induces more intense neuronal activity and larger light power induced more action potentials of neurons within a certain power range (1.032 mW–1.584 mW). The present study provided an efficient method for the detection and modulation of neurons in vivo and an effective tool to study neural circuit in the brain.


Author(s):  
Beverly E. Maleeff ◽  
Timothy K. Hart ◽  
Stephen J. Wood ◽  
Ronald Wetzel

Alzheimer's disease is characterized post-mortem in part by abnormal extracellular neuritic plaques found in brain tissue. There appears to be a correlation between the severity of Alzheimer's dementia in vivo and the number of plaques found in particular areas of the brain. These plaques are known to be the deposition sites of fibrils of the protein β-amyloid. It is thought that if the assembly of these plaques could be inhibited, the severity of the disease would be decreased. The peptide fragment Aβ, a precursor of the p-amyloid protein, has a 40 amino acid sequence, and has been shown to be toxic to neuronal cells in culture after an aging process of several days. This toxicity corresponds to the kinetics of in vitro amyloid fibril formation. In this study, we report the biochemical and ultrastructural effects of pH and the inhibitory agent hexadecyl-N-methylpiperidinium (HMP) bromide, one of a class of ionic micellar detergents known to be capable of solubilizing hydrophobic peptides, on the in vitro assembly of the peptide fragment Aβ.


Author(s):  
Enrico D.F. Motti ◽  
Hans-Georg Imhof ◽  
Gazi M. Yasargil

Physiologists have devoted most attention in the cerebrovascular tree to the arterial side of the circulation which has been subdivided in three levels: 1) major brain arteries which keep microcirculation constant despite changes in perfusion pressure; 2) pial arteries supposed to be effectors regulating microcirculation; 3) intracerebral arteries supposed to be deprived of active cerebral blood flow regulating devices.The morphological search for microvascular effectors in the cerebrovascular bed has been elusive. The opaque substance of the brain confines in vivo investigation to the superficial pial arteries. Most morphologists had to limit their observation to the random occurrence of a favorable site in the practically two-dimensional thickness of diaphanized histological sections. It is then not surprising most investigators of the cerebral microcirculation refer to an homogeneous network of microvessels interposed between arterioles and venules.We have taken advantage of the excellent depth of focus afforded by the scanning electron microscope (SEM) to investigate corrosion casts obtained injecting a range of experimental animals with a modified Batson's acrylic mixture.


Author(s):  
Ni Made Ridla Parwata

Overtraining syndrome is a decrease in physical capacity, emotions and immunity due to training that is too often without adequate periods of rest. Overtraining is often experienced by athletes who daily undergo heavy training with short break periods. This research aims to look at the effect of overtraining aerobic physical exercise on memory in mice. The research method was experimental in vivo with the subject of adult male rat (Rattus Norvegicus) Winstar strain aged 8-10 weeks, body weight 200-250 gr. Divided into three groups, namely the control group, aerobic group and overtraining group. The results of memory tests with water E Maze showed an increase in the duration of travel time and the number of animal errors made by the overtraining group (p = 0.003). This study concludes that overtraining aerobic physical exercise can reduce memory in rat hippocampus.


Author(s):  
Insih Wilujeng ◽  
Tri Suci Yolanda Putri

This research developed Science, Environment, Technology, Society (SETS) e-module integrated with predict, observe, explain (POE) model on the subject matter of Earth Layer and Its Dynamics for grade VII students. This study aimed to reveal i) the feasibility of the developed e-module for grade VII students, and ii) the practicality of the developed e-module and its dynamics. This is a developmental research adopting the ADDIE model consisting of five stages, i.e.: analysis, design, development, implementation, and evaluation. The subject of the limited test consisted of 15 students of grade VIII.G of Public Junior High School 8 Yogyakarta. The data were collected using a product feasibility assessment sheet for material and media experts, a product practicality assessment sheet for teachers, and a product readability assessment sheet for students. The results show that the developed e-module was feasible to be used according to the material and media experts and the developed e-module is practical according to teachers and students.


Author(s):  
V. A. Maksimenko ◽  
A. A. Harchenko ◽  
A. Lüttjohann

Introduction: Now the great interest in studying the brain activity based on detection of oscillatory patterns on the recorded data of electrical neuronal activity (electroencephalograms) is associated with the possibility of developing brain-computer interfaces. Braincomputer interfaces are based on the real-time detection of characteristic patterns on electroencephalograms and their transformation  into commands for controlling external devices. One of the important areas of the brain-computer interfaces application is the control of the pathological activity of the brain. This is in demand for epilepsy patients, who do not respond to drug treatment.Purpose: A technique for detecting the characteristic patterns of neural activity preceding the occurrence of epileptic seizures.Results:Using multi-channel electroencephalograms, we consider the dynamics of thalamo-cortical brain network, preceded the occurrence of an epileptic seizure. We have developed technique which allows to predict the occurrence of an epileptic seizure. The technique has been implemented in a brain-computer interface, which has been tested in-vivo on the animal model of absence epilepsy.Practical relevance:The results of our study demonstrate the possibility of epileptic seizures prediction based on multichannel electroencephalograms. The obtained results can be used in the development of neurointerfaces for the prediction and prevention of seizures of various types of epilepsy in humans. 


2020 ◽  
Vol 17 (3) ◽  
pp. 229-245
Author(s):  
Gang Wang ◽  
Junjie Wang ◽  
Rui Guan

Background: Owing to the rich anticancer properties of flavonoids, there is a need for their incorporation into drug delivery vehicles like nanomicelles for safe delivery of the drug into the brain tumor microenvironment. Objective: This study, therefore, aimed to prepare the phospholipid-based Labrasol/Pluronic F68 modified nano micelles loaded with flavonoids (Nano-flavonoids) for the delivery of the drug to the target brain tumor. Methods: Myricetin, quercetin and fisetin were selected as the initial drugs to evaluate the biodistribution and acute toxicity of the drug delivery vehicles in rats with implanted C6 glioma tumors after oral administration, while the uptake, retention, release in human intestinal Caco-2 cells and the effect on the brain endothelial barrier were investigated in Human Brain Microvascular Endothelial Cells (HBMECs). Results: The results demonstrated that nano-flavonoids loaded with myricetin showed more evenly distributed targeting tissues and enhanced anti-tumor efficiency in vivo without significant cytotoxicity to Caco-2 cells and alteration in the Trans Epithelial Electric Resistance (TEER). There was no pathological evidence of renal, hepatic or other organs dysfunction after the administration of nanoflavonoids, which showed no significant influence on cytotoxicity to Caco-2 cells. Conclusion: In conclusion, Labrasol/F68-NMs loaded with MYR and quercetin could enhance antiglioma effect in vitro and in vivo, which may be better tools for medical therapy, while the pharmacokinetics and pharmacodynamics of nano-flavonoids may ensure optimal therapeutic benefits.


2020 ◽  
Vol 17 ◽  
Author(s):  
Reem Habib Mohamad Ali Ahmad ◽  
Marc Fakhoury ◽  
Nada Lawand

: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive loss of neurons leading to cognitive and memory decay. The main signs of AD include the irregular extracellular accumulation of amyloidbeta (Aβ) protein in the brain and the hyper-phosphorylation of tau protein inside neurons. Changes in Aβ expression or aggregation are considered key factors in the pathophysiology of sporadic and early-onset AD and correlate with the cognitive decline seen in patients with AD. Despite decades of research, current approaches in the treatment of AD are only symptomatic in nature and are not effective in slowing or reversing the course of the disease. Encouragingly, recent evidence revealed that exposure to electromagnetic fields (EMF) can delay the development of AD and improve memory. This review paper discusses findings from in vitro and in vivo studies that investigate the link between EMF and AD at the cellular and behavioural level, and highlights the potential benefits of EMF as an innovative approach for the treatment of AD.


Sign in / Sign up

Export Citation Format

Share Document