scholarly journals Co-continuous network polymers using epoxy monolith for the design of tough materials

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ren Tominaga ◽  
Yukihiro Nishimura ◽  
Yasuhito Suzuki ◽  
Yoshihiro Takeda ◽  
Masaru Kotera ◽  
...  

AbstractHigh-performance polymer materials that can exhibit distinguished mechanical properties have been developed based on material design considering energy dissipation by sacrificial bond dissociation. We now propose co-continuous network polymers (CNPs) for the design of tough polymer materials. CNP is a new composite material fabricated by filling the three-dimensionally continuous pores of a hard epoxy monolith with any cross-linked polymer having a low glass transition temperature (Tg). The structure and mechanical properties of the CNPs containing epoxy resins, thiol-ene thermosets, and polyacrylates as the low-Tg components were investigated by differential scanning calorimetry, dynamic mechanical analysis, tensile tests as well as scanning electron microscopic observations and non-destructive 3D X-ray imaging in order to clarify a mechanism for exhibiting an excellent strength and toughness. It has been demonstrated that the mechanical properties and fractural behavior of the CNPs significantly depend on the network structure of the filler polymers, and that a simultaneous high strength and toughness are achieved via the sacrificial fracture mechanism of epoxy-based hard materials with co-continuous network structures.

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1242
Author(s):  
Olga Mysiukiewicz ◽  
Paulina Kosmela ◽  
Mateusz Barczewski ◽  
Aleksander Hejna

Investigations related to polymer/metal composites are often limited to the analysis of the electrical and thermal conductivity of the materials. The presented study aims to analyze the impact of aluminum (Al) filler content (from 1 to 20 wt%) on the rarely investigated properties of composites based on the high-density polyethylene (HDPE) matrix. The crystalline structure, rheological (melt flow index and oscillatory rheometry), thermal (differential scanning calorimetry), as well as static (tensile tests, hardness, rebound resilience) and dynamic (dynamical mechanical analysis) mechanical properties of composites were investigated. The incorporation of 1 and 2 wt% of aluminum filler resulted in small enhancements of mechanical properties, while loadings of 5 and 10 wt% provided materials with a similar performance to neat HDPE. Such results were supported by the lack of disturbances in the rheological behavior of composites. The presented results indicate that a significant content of aluminum filler may be introduced into the HDPE matrix without additional pre-treatment and does not cause the deterioration of composites’ performance, which should be considered beneficial when engineering PE/metal composites.


2021 ◽  
Vol 36 (2) ◽  
pp. 137-143
Author(s):  
S. A. Awad

Abstract This paper aims to describe the thermal, mechanical, and surface properties of a PVA/HPP blend whereby the film was prepared using a solution casting method. The improvements in thermal and mechanical properties of HPP-based PVA composites were investigated. The characterization of pure PVA and PVA composite films included tensile tests, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results of TGA and DSC indicated that the addition of HPP increased the thermal decomposition temperature of the composites. Mechanical properties are significantly improved in PVA/HPP composites. The thermal stability of the PVA composite increased with the increase of HPP filler content. The tensile strength increased from 15.74 ± 0.72 MPa to 27.54 ± 0.45 MPa and the Young’s modulus increased from 282.51 ± 20.56 MPa to 988.69 ± 42.64 MPa for the 12 wt% HPP doped sample. Dynamic mechanical analysis (DMA) revealed that at elevated temperatures, enhanced mechanical properties because of the presence of HPP was even more noticeable. Morphological observations displayed no signs of agglomeration of HPP fillers even in composites with high HPP loading.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1178 ◽  
Author(s):  
Yanping Liu ◽  
Hanghang Wei ◽  
Zhen Wang ◽  
Qian Li ◽  
Nan Tian

The mechanical properties of poly (lactic acid) (PLA) nanofibers with 0%, 5%, 10%, and 20% (w/w) poly (vinyl alcohol) (PVA) were investigated at the macro- and microscale. The macro-mechanical properties for the fiber membrane revealed that both the modulus and fracture strain could be improved by 100% and 70%, respectively, with a PVA content of 5%. The variation in modulus and fracture strain versus the diameter of a single electrospun fiber presented two opposite trends, while simultaneous enhancement was observed when the content of PVA was 5% and 10%. With a diameter of 1 μm, the strength and toughness of the L95V5 and L90V10 fibers were enhanced to over 3 and 2 times that of pure PLA, respectively. The structural evolution of electrospun nanofiber was analyzed by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). Although PLA and PVA were still miscible in the concentration range used, the latter could crystallize independently after electrospinning. According to the crystallization behavior of the nanofibers, a double network formed by PLA and PVA—one microcrystal/ordered structure and one amorphous structure—is proposed to contribute to the simultaneous enhancement of strength and toughness, which provides a promising method for preparing biodegradable material with high performance.


2016 ◽  
Vol 682 ◽  
pp. 245-251 ◽  
Author(s):  
Grzegorz Włoch ◽  
Tomasz Skrzekut ◽  
Jakub Sobota ◽  
Antoni Woźnicki ◽  
Justyna Cisoń

Mixed and preliminarily consolidated powders of aluminium and nickel (90 mass % Al and 10 mass % Ni) were hot extruded. As results the rod, 8 mm in diameter, was obtained. As-extruded material was subjected to the microstructural investigations using scanning electron microscopy (SEM/EDS) and X-ray analysis (XRD). The differential scanning calorimetry (DSC) and thermo-mechanical analysis (TMA) were also performed. The mechanical properties of as extruded material were determined by the tensile test and Vickers hardness measurements. In order to evaluate the thermal stability of PM alloy, samples were annealed at the temperature of 475 and 550 °C. After annealing Vickers hardness measurements and tensile tests were carried out. The plastic consolidation of powders during extrusion was found to be very effective, because no pores or voids were observed in the examined material. The detailed microstructural investigations and XRD analyses did not reveal the presence of the intermetallic phases in the as-extruded material. During annealing, the Al3Ni intermetallic compound was formed as the result of chemical reaction between the alloy components. The hardness of the alloy after annealing at the temperature of 475°C was found to be comparable to the hardness in as-extruded state. Annealing of the material at the temperature of 550°C results in hardness decreasing by about 50%, as the consequence of porosity formation and Al3Ni cracking.


2021 ◽  
Vol 9 ◽  
Author(s):  
Linda Salminen ◽  
Erno Karjalainen ◽  
Vladimir Aseyev ◽  
Heikki Tenhu

This article introduces butyl acrylate-based materials that are toughened with dynamic crosslinkers. These dynamic crosslinkers are salts where both the anion and cation polymerize. The ion pairs between the polymerized anions and cations form dynamic crosslinks that break and reform under deformation. Chemical crosslinker was used to bring shape stability. The extent of dynamic and chemical crosslinking was related to the mechanical and thermal properties of the materials. Furthermore, the dependence of the material properties on different dynamic crosslinkers—tributyl-(4-vinylbenzyl)ammonium sulfopropyl acrylate (C4ASA) and trihexyl-(4-vinylbenzyl)ammonium sulfopropyl acrylate (C6ASA)—was studied. The materials’ mechanical and thermal properties were characterized by means of tensile tests, dynamic mechanical analysis, differential scanning calorimetry, and thermogravimetric analysis. The dynamic crosslinks strengthened the materials considerably. Chemical crosslinks decreased the elasticity of the materials but did not significantly affect their strength. Comparison of the two ionic crosslinkers revealed that changing the crosslinker from C4ASA to C6ASA results in more elastic, but slightly weaker materials. In conclusion, dynamic crosslinks provide substantial enhancement of mechanical properties of the materials. This is a unique approach that is utilizable for a wide variety of polymer materials.


2016 ◽  
Vol 30 (11) ◽  
pp. 1503-1521 ◽  
Author(s):  
Yann Lebaupin ◽  
Michaël Chauvin ◽  
Thuy-Quynh Truong Hoang ◽  
Fabienne Touchard ◽  
Alexandre Beigbeder

Flax unidirectional (UD) fabrics and polyamide 11 (PA11) are used to create a 100% bio-sourced composite. The fabrication process is hot press moulding. Different configurations are studied by varying process parameters and composite constituents. Three temperature values (190°C, 200°C and 210°C) are combined with three pressure levels (35, 65 and 100 bars). In addition, two types of flax fabric (A and B) are tested and two types of PA11 (in the form of powder or film) are used. The two forms of PA11 are characterized using differential scanning calorimetry and rheological methods. Ten different composites are then manufactured. They are compared by means of tensile tests and dynamic mechanical analysis (DMA). Results are correlated with microstructural study: measurements of porosity degree and scanning electron microscopic observations are also performed. Finally, an optimum configuration is determined: the composite flax B/PA11 film manufactured with a temperature value of 210°C and using gradual levels of pressure (25 bars during 2 min, 40 bars during 2 min and 65 bars until the end of cycle). This configuration leads to a Young’s modulus value of 36 GPa and a tensile strength of 174 MPa, with the highest storage modulus and the lowest damping factor values measured by DMA.


2018 ◽  
Vol 19 (7) ◽  
pp. 2032 ◽  
Author(s):  
Dongmei Han ◽  
Guiji Chen ◽  
Min Xiao ◽  
Shuanjin Wang ◽  
Shou Chen ◽  
...  

The blends of Poly(propylene carbonate) (PPC) and polyester-based thermoplastic polyurethane (TPU) were melt compounded in an internal mixer. The compatibility, thermal behaviors, mechanical properties and toughening mechanism of the blends were investigated using Fourier transform infrared spectra (FTIR), tensile tests, impact tests, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and dynamic mechanical analysis technologies. FTIR and SEM examination reveal strong interfacial adhesion between PPC matrix and suspended TPU particles. Dynamic mechanical analyzer (DMA) characterize the glass transition temperature, secondary motion and low temperature properties. By the incorporation of TPU, the thermal stabilities are greatly enhanced and the mechanical properties are obviously improved for the PPC/TPU blends. Moreover, PPC/TPU blends exhibit a brittle-ductile transition with the addition of 20 wt % TPU. It is considered that the enhanced toughness results in the shear yielding occurred in both PPC matrix and TPU particles of the blends.


2017 ◽  
Vol 30 (10) ◽  
pp. 1169-1182 ◽  
Author(s):  
Changlong Bi ◽  
Dongyu Zhao

Nanosilver and nanonickel were first loaded on the surfaces of multiwalled carbon nanotubes (MWCNTs) by liquid-phase reduction method and the multiwalled carbon nanotubes/nanosilver-nickel (MWCNTs/Ag-Ni) composites were formed. The MWCNTs/Ag-Ni were homogeneously dispersed in the epoxy resin (EP), which can form epoxy resin/multiwalled carbon nanotubes/nanosilver-nickel (EP/MWCNTs/Ag-Ni) composites. The results based on X-ray photoelectron spectroscopy show the chemical bonds in the MWCNTs/Ag-Ni. By the scanning electron microscope method, it can be concluded that the enhancement in mechanical properties is due to the strong interaction between MWCNTs and the EP matrix. It is proved that through the comparative tests, the addition of nanosliver-nickel rigid particles can enhance the interaction between MWCNTs and the EP matrix, which can improve the mechanical properties of modified EP. Compared with the pure EP, the tensile strength and impact strength of nanocomposites improve around 81% and 139% by adding 1.3 wt% MWCNTs/Ag-Ni. In addition, the experimental results based on dynamic mechanical analysis (DMA) show that the glass transition temperature of modified EP (1.3 wt% MWCNTs/Ag-Ni in EP matrix) is significantly increased by about 18.6°C. Compared with the pure EP, the conductivity of modified EP (1.3 wt% MWCNTs/Ag-Ni in EP matrix) is also increased by around 63%. Because of the excellent mechanical properties and conductivity of EP/MWCNTs/Ag-Ni nanocomposites, the development of high-performance polymer materials will be greatly achieved.


2005 ◽  
Vol 127 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Niels Grabow ◽  
Martin Schlun ◽  
Katrin Sternberg ◽  
Nico Hakansson ◽  
Sven Kramer ◽  
...  

Background: The development of endoluminal stents from polymeric materials requires an understanding of the basic mechanical properties of the polymer and the effects of manufacturing and sterilization on those properties. Methods: Pure poly(L-lactide) (PLLA) and PLLA containing varying amounts of triethylcitrate (TEC) as a plasticizer (5-10-15%) were studied. The specimens were solution-cast and CO2 laser-cut. Specimen dimensions were adapted to the strut size of polymeric vascular stents. The properties of the PLLA micro-specimens were assessed before and after sterilization (EtO cold gas, H2O2-plasma, beta- and gamma-irradiation). Tensile tests, and creep and recovery tests were carried out at 37°C. Additionally the thermal and thermo-mechanical characteristics were investigated using dynamic-mechanical analysis (DMA) and differential scanning calorimetry (DSC). Results: The results showed the dramatic influence of the plasticizer content and sterilization procedure on the mechanical properties of the material. Laser cutting had a lesser effect. Hence the effects of processing and sterilization must not be overlooked in the material selection and design phases of the development process leading to clinical use. Altogether, the results of these studies provide a clearer understanding of the complex interaction between the laser machining process and terminal sterilization on the primary mechanical properties of PLLA and PLLA plasticized with TEC.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6939
Author(s):  
Pablo Reyes ◽  
Mariya Edeleva ◽  
Dagmar R. D’hooge ◽  
Ludwig Cardon ◽  
Pieter Cornillie

Polyacrylics have been considered for a broad range of material applications, including coatings, dental applications, and adhesives. In this experimental study, the casting potential of a group of (co)monomers belonging to the acrylic family has been explored to enable a more sustainable use of these polymer materials in the medical and veterinary science field. The individual contributions of each comonomer have been analyzed, the reaction conversion has been studied via gas chromatography (GC), the rheological behavior has been characterized via stress-controlled measurements, and the final mechanical properties have been obtained from tensile, flexure, and impact tests. The GC results allow assessing the pot life and thus the working window of the casting process. For the rheological measurements, which start from low-viscous mixtures, a novel protocol has been introduced to obtain accurate absolute data. The rheological data reflect the time dependencies of the GC data but facilitate a more direct link with the macroscopic material data. Specifically, the steep increase in the viscosity with increasing reaction time for the methyl methacrylate (MMA)/ethylene glycol dimethyl methacrylate (EGDMA) case (2% crosslinker) allows maximizing several mechanical properties: the tensile/flexure modulus, the tensile/flexure stress at break, and the impact strength. This opens the pathway to more dedicated chemistry design for corrosion casting and polyacrylic material design in general.


Sign in / Sign up

Export Citation Format

Share Document