scholarly journals Low nitrogen retention in a Japanese cedar plantation in a suburban area, western Japan

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ru Yang ◽  
Masaaki Chiwa

AbstractThis study aimed to evaluate nitrogen (N) leaching from Japanese cedar, the main plantation species in Japan, in response to elevated atmospheric N deposition. N leaching and possible factors, including soil nitrification, tree N uptake, and topographic steepness, were evaluated in mature (64–69 year) Japanese cedar trees planted on steep slopes (25°–40°) and neighboring Japanese oak plantations in suburban forests, which served as reference sites. N fertilization (50 kg N ha−1 year−1 as ammonium nitrate) was conducted to evaluate the response of N leaching to an elevated inorganic N pool in the surface soil. The soil water nitrate (NO3−) concentration below the rooting zone in the Japanese cedar forest (607 ± 59 μmol L−1) was much higher than that in the Japanese oak plantations (8.7 ± 8.1 μmol L−1) and increased immediately after fertilization, indicating high N leaching from the Japanese cedar plantations. The relatively low N uptake by Japanese cedar planted on the steep slopes could be an important contributor to the high N leaching. This study highlights the importance of vegetation composition for managing the water quality in headwater streams from forest ecosystems disturbed by atmospheric N deposition.

1998 ◽  
Vol 2 (4) ◽  
pp. 415-429 ◽  
Author(s):  
O. J. Kjønaas ◽  
R. F. Wright

Abstract. Chronic deposition of inorganic nitrogen (N) compounds from the atmosphere to forested ecosystems can alter the status of a forest ecosystem from N-limited towards N-rich, which may cause, among other things, increased leaching of inorganic N below the rooting zone. To assess the time aspects of excess N leaching, a process-oriented dynamic model, MERLIN (Model of Ecosystem Retention and Loss of Inorganic Nitrogen), was tested on an N-manipulated catchment at Gårdsjön, Sweden (NITREX project). Naturally generated mature Norway spruce dominates the catchment with Scots pine in drier areas. Since 1991, ammonium nitrate (NH4NO3) solution at a rate of about 35 kg N ha-1 yr-1 (250 mmol m-2 yr-1) has been sprinkled weekly, to simulate increased atmospheric N deposition. MERLIN describes C and N cycles, where rates of uptake and cycling between pools are governed by the C/N ratios of plant and soil pools. The model is calibrated through a hindcast period and then used to predict future trends. A major source of uncertainty in model calibration and prediction is the paucity of good historical information on the specific site and stand history over the hindcast period 1930 to 1990. The model is constrained poorly in an N-limited system. The final calibration, therefore, made use of the results from the 6-year N addition experiment. No independent data set was available to provide a test for the model calibration. The model suggests that most N deposition goes to the labile (LOM) and refractory (ROM) organic matter pools. Significant leaching is predicted to start as the C/N ratio in LOM is reduced from the 1990 value of 35 to <28. At ambient deposition levels, the system is capable of retaining virtually all incoming N over the next 50 years. Increased decomposition rates, however, could simulate nitrate leaching losses. The rate and capacity of N assimilation as well as the change in carbon dynamics are keys to ecosystem changes. Because the knowledge of these parameters is currently inadequate, the model has a limited ability to predict N leaching from currently N-limited coniferous forest ecosystems in Scandinavia. The model is a useful tool for bookkeeping of N pools and fluxes, and it is an important contribution to further development of qualitative understanding of forest N cycles.


HortScience ◽  
2000 ◽  
Vol 35 (7) ◽  
pp. 1258-1262 ◽  
Author(s):  
Sidat Yaffa ◽  
Bharat P. Singh ◽  
Upendra M. Sainju ◽  
K.C. Reddy

Sustainable practices are needed in vegetable production to maintain yield and to reduce the potential for soil erosion and N leaching. We examined the effects of tillage [no-till (NT), chisel plowing (CP), and moldboard plowing (MP)], cover cropping [hairy vetch (Vicia villosa Roth) vs. winter weeds], N fertilization (0, 90, and 180 kg·ha-1 N), and date of sampling on tomato (Lycopersicon esculentum Mill.) yield, N uptake, and soil inorganic N in a Norfolk sandy loam in Fort Valley, Ga. for 2 years. Yield was greater with CP and MP than with NT in 1996 and was greater with 90 and 180 than with 0 kg·ha-1 N in 1996 and 1997. Similarly, aboveground tomato biomass (dry weight of stems + leaves + fruits) and N uptake were greater with CP and MP than with NT from 40 to 118 days after transplanting (DAT) in 1996; greater with hairy vetch than with winter weeds at 82 DAT in 1997; and greater with 90 or 180 than with 0 kg·ha-1 N at 97 DAT in 1996 and at 82 DAT in 1997. Soil inorganic N was greater with NT or CP than with MP at 0- to 10-cm depth at 0 and 30 DAT in 1996; greater with hairy vetch than with winter weeds at 0- to 10-cm and at 10- to 30-cm at 0 DAT in 1996 and 1997, respectively; and greater with 90 or 180 than with 0 kg·ha-1 N from 30 to 116 DAT in 1996 and 1997. Levels of soil inorganic N and tomato N uptake indicated that N release from cover crop residues was synchronized with N need by tomato, and that N fertilization should be done within 8 weeks of transplanting. Similar tomato yield, biomass, and N uptake with CP vs. MP and with 90 vs. 180 kg·ha-1 N suggests that minimum tillage, such as CP, and 90 kg·ha-1 N can better sustain tomato yield and reduce potentials for soil erosion and N leaching than can conventional tillage, such as MP, and 180 kg·ha-1 N, respectively. Because of increased vegetative cover in the winter, followed by increased mulch and soil N in the summer, hairy vetch can reduce the potential for soil erosion and the amount of N fertilization required for tomato better than can winter weeds.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2354
Author(s):  
Asher Bar-Tal ◽  
Escain Kiwonde ◽  
Beeri Kanner ◽  
Ido Nitsan ◽  
Raneen Shawahna ◽  
...  

The overall aim of this research was to optimize nitrogen (N) fertilization of plants under desalinated water and a wide range of chloride concentrations for high yield while minimizing downward leaching of nitrate and chloride. The response of two crops, lettuce and potato, to N concentration (CN) in the irrigating solution using desalinated and wide range of Cl concentrations (CCL) was evaluated. The yields of both crops increased with N up to optimal CN of the irrigating solution and decreased as CCL increased. Optimal CN in both crops was higher in the desalinated water than high CCL treatments. N uptake by plants increased with CN in the irrigating solution and the highest uptake was at low CCL. As expected, N fertilization suppressed Cl accumulation in plant tissues. Drainage of N and Cl increased with increase in CCL in the irrigating solution and N fertilization above optimal CN resulted in steep rise in downward N leaching. The overall conclusion is that as water quality is improved through desalination, higher N supply is required for high yields with less groundwater pollution by downward leaching of N and Cl.


2007 ◽  
Vol 146 (1) ◽  
pp. 77-84 ◽  
Author(s):  
K. SIELING ◽  
H. KAGE

SUMMARYIn northwest (NW) Europe, oilseed rape (OSR) is often used as a preceding crop for winter wheat. Due to its low N harvest index (HI) and to favourable soil conditions after harvest, large amounts of mineral N remain in the soil, which cannot completely be taken up by the subsequent wheat crop. This increases the risk of N leaching into the groundwater during the following winter. Recently, semi-dwarf genotypes of OSR were developed and made commercially available that show similar yields but reduced height growth compared to conventional genotypes. The present authors hypothesized that the introduction of dwarfing genes leads to an increase in HI for dry matter (DM) and for N of OSR. As a consequence, semi-dwarf genotypes would accumulate less aerial biomass, return fewer plant residues to the soil and need less N to achieve yield maximum compared to conventional hybrids or open pollinating varieties. This may lead to a reduced risk of N leaching after growing OSR. In order to test this hypothesis, field trials conducted in 2003/04–2005/06 near Kiel in NW Germany combined four commercial varieties of OSR (Express, Talent, Trabant and Belcanto as semi-dwarf genotype), two seeding dates (mid-August and beginning of September) and eight mineral N fertilization rates (0–240 kg N/ha). On average in 2003/04–2004/05, the semi-dwarf genotype Belcanto achieved significantly less seed yield (4·44 t/ha) than the other varieties (4·65–4·88 t/ha). However, all varieties tested required similar N fertilization to achieve maximum yield. In addition, N offtake by the seeds did not differ. No interaction between genotype and N treatment was observed. Detailed analysis of DM accumulation and N uptake during the growth period revealed only small differences between the varieties in the averages of all N treatments and both years. At harvest, Belcanto produced more pods/m2 and a slightly higher 1000 seed weight. Nevertheless, HI and N HI were similar for all genotypes. It is concluded that, despite its lower plant height, the semi-dwarf genotype did not provide the opportunity to reduce the risk of N leaching after growing OSR.


1989 ◽  
Vol 19 (8) ◽  
pp. 1037-1043 ◽  
Author(s):  
D. H. DeHayes ◽  
M. A. Ingle ◽  
C. E. Waite

Red spruce (Picearubens Sarg.) seedlings were treated with one of four concentrations of NH4NO3 (0, 300, 1500, and 3000 kg N•ha−1•year−1) applied to the soil, with and without triple superphosphate, during early, mid-, or late summer. Laboratory freezing assessments indicated that cold tolerance of treated seedlings generally increased with increasing nitrogen (N) uptake, with the exception of the highest N treatment. Seedlings receiving 1500 kg N•ha−1•year−1 were most cold tolerant on most sample dates. In general, these seedlings were hardier than those receiving 300 kg N•ha−1•year−1, which were hardier than unfertilized control seedlings. Seedlings receiving supplemental N also acclimated to cold more rapidly in autumn and deacclimated more slowly in spring than unfertilized controls. Supplemental phosphorus (P) had no influence on cold tolerance, and there was no evidence of a N × P interaction. Significant differences in cold tolerance associated with time of N application (early, mid-, and late summer) were detected in autumn and winter, but not in spring. In general, seedlings receiving N in mid- or late summer were as hardy or hardier than seedlings fertilized in early summer, regardless of the concentration of fertilizer. Significant interactions between N and timing of treatments occurred primarily because N applied in early summer resulted in only a slight increase in cold tolerance, whereas mid- and late summer N application resulted in a substantial increase in cold tolerance. Combined results suggest that it is highly unlikely that either the amount or timing of atmospheric N deposition is responsible for the winter injury frequently observed in red spruce.


2016 ◽  
Vol 113 (19) ◽  
pp. E2608-E2616 ◽  
Author(s):  
Peter M. Homyak ◽  
Joseph C. Blankinship ◽  
Kenneth Marchus ◽  
Delores M. Lucero ◽  
James O. Sickman ◽  
...  

Nitric oxide (NO) is an important trace gas and regulator of atmospheric photochemistry. Theory suggests moist soils optimize NO emissions, whereas wet or dry soils constrain them. In drylands, however, NO emissions can be greatest in dry soils and when dry soils are rewet. To understand how aridity and vegetation interact to generate this pattern, we measured NO fluxes in a California grassland, where we manipulated vegetation cover and the length of the dry season and measured [δ15-N]NO and [δ18-O]NO following rewetting with15N-labeled substrates. Plant N uptake reduced NO emissions by limiting N availability. In the absence of plants, soil N pools increased and NO emissions more than doubled. In dry soils, NO-producing substrates concentrated in hydrologically disconnected microsites. Upon rewetting, these concentrated N pools underwent rapid abiotic reaction, producing large NO pulses. Biological processes did not substantially contribute to the initial NO pulse but governed NO emissions within 24 h postwetting. Plants acted as an N sink, limiting NO emissions under optimal soil moisture. When soils were dry, however, the shutdown in plant N uptake, along with the activation of chemical mechanisms and the resuscitation of soil microbial processes upon rewetting, governed N loss. Aridity and vegetation interact to maintain a leaky N cycle during periods when plant N uptake is low, and hydrologically disconnected soils favor both microbial and abiotic NO-producing mechanisms. Under increasing rates of atmospheric N deposition and intensifying droughts, NO gas evasion may become an increasingly important pathway for ecosystem N loss in drylands.


1999 ◽  
Vol 8 (4-5) ◽  
pp. 423-440 ◽  
Author(s):  
L. PIETOLA ◽  
R. TANNI ◽  
P. ELONEN

The role of plant growth regulators (PGR) in nitrogen (N) fertilization of spring wheat and oats (CCC), fodder barley (etephon/mepiquat) and oilseed rape (etephone) in crop rotation was studied in 1993–1996 on loamy clay soil. Carry over effect of the N fertilization rates (0–180 kg ha-1 ) was evaluated in 1997. N fertilization rate for the best grain/seed yield (120–150 kg ha-1 ) was not affected by PGRs. The seed and N yields of oilseed rape were improved most frequently by recommended use of PGR. The yields of oats were increased in 1995–96. Even though PGR effectively shortened the plant height of spring wheat, the grain yield increased only in 1995. N yield of wheat grains was not increased. Response of fodder barley to PGR was insignificant or even negative in 1995. The data suggest that PGRs may decrease some N leaching at high N rates by improving N uptake by grain/seeds, if the yield is improved. The carryover study showed that in soils with no N fertilization, as well as in soils of high N rates, N uptake was higher than in soils with moderate N fertilization (60–90 kg ha-1 ), independent of PGRs. According to soil mineral N contents, N leaching risk is significant (15–35 kg ha-1 ) only after dry and warm late seasons. After a favourable season of high yields, the N rates did not significantly affect soil mineral N contents. ;


1997 ◽  
Vol 128 (1) ◽  
pp. 79-86 ◽  
Author(s):  
K. SIELING ◽  
O. GÜNTHER-BORSTEL ◽  
H. HANUS

Nitrogen (N) fertilizer not used by the crop can increase the risk of nitrate leaching into the groundwater. In two growing seasons, 1990/91 and 1991/92, the relationships between N fertilization and yield, N uptake by the grain and the N leaching in the subsequent percolation period were investigated in a multifactorial field experiment at Hohenschulen Experimental Station near Kiel in NW Germany. The crop rotation was oilseed rape – winter wheat – winter barley, and effects of soil tillage (minimum tillage without ploughing, conventional tillage), application of pig slurry (none, application in autumn, application in autumn and in spring), mineral N fertilization (none, 80 or 200 kg N ha−1 to oilseed rape and 120 or 240 kg N ha−1 to cereals) and application of fungicides (none, intensive) were all tested. In each year, the rotation and the treatments were located on the same plots. Mineral N fertilization and fungicide application increased yield and N uptake by grain or seed in all crops. In contrast, the application of slurry, especially in autumn, had only small effects on yield and N uptake. Nitrogen losses by leaching (measured using porous ceramic cups) were affected mainly by the year and the crop. In 1992/93, averaged over all factors, 80 kg N ha−1 was leached compared with 28 kg N ha−1 the previous year. Oilseed rape reduced N losses, whereas under winter wheat up to 160 kg N ha−1 was leached. Due to a lower N-use efficiency, autumn applications of slurry increased N leaching, and mineral N fertilization of the preceding crop also led to higher N losses.Since the amount of leached N depends both on the nitrogen left by the preceding crop (unused fertilizer N as well as N in residues) and on N uptake by the subsequent crop, it is not possible to apportion the N losses to any particular crop in the rotation. The cropping sequence, together with its previous and subsequent crops, must also be considered.To minimize leaching, N fertilization must meet the needs of the growing crop. In order to improve the efficiency further, investigations must be conducted in order to understand the dynamics of N in the plant–soil system in conjunction with the weather and crop management practices.


2002 ◽  
Vol 32 (10) ◽  
pp. 1741-1752 ◽  
Author(s):  
M Barker ◽  
H Van Miegroet ◽  
N S Nicholas ◽  
I F Creed

High-elevation red spruce (Picea rubens Sarg.) – Fraser fir (Abies fraseri (Pursh) Poir.) forests of the southern Appalachians exhibit considerable spatial heterogeneity in structure, and possibly in N uptake, because of a combination of natural disturbances and heavy fir mortality caused by infestations of the exotic balsam woolly adelgid (Adelges piceae Ratz). The objectives of this study are to determine spatial variability in tree N uptake in a small high-elevation catchment in the Great Smoky Mountains National Park, compare outcomes among calculation methods, and assess the influence of stand and landscape properties on N uptake. Tree N uptake is estimated for fifty 20 × 20 m plots in the Noland Divide Watershed (NDW). Components considered in the calculations are stem growth, foliage increment, and mortality of spruce, fir, and yellow birch (Betula alleghaniensis Britt.) from 1993 and 1998 stand inventories; throughfall N flux measured in summers 1998 and 1999; litterfall N return for 1 year in a subset of 12 plots; tissue N analyses; and atmospheric N deposition and root turnover estimates from the literature. Overstory N uptake varies spatially within NDW, with a CV of 9–41% depending on the calculation method. Variability among methods is even higher, with an almost 15-fold difference between the smallest and largest average overstory uptake estimate (5 vs. 74 kg·ha–1·year–1). Only 5 and 3 kg·ha–1·year–1 of N is sequestered in wood and foliar increment, respectively, while 36 kg·ha–1 of N returns annually as aboveground litterfall. Uptake and its components are correlated with measures of stand structure but not with elevation or aspect.


HortScience ◽  
2002 ◽  
Vol 37 (7) ◽  
pp. 1061-1064 ◽  
Author(s):  
S.J. Breschini ◽  
T.K. Hartz

Trials were conducted in 15 commercial fields in the central coast region of California in 1999 and 2000 to evaluate the use of presidedress soil nitrate testing (PSNT) to determine sidedress N requirements for production of iceberg and romaine lettuce (Lactuca sativa L.). In each field a large plot (0.2-1.2 ha) was established in which sidedress N application was based on presidedress soil NO3-N concentration. Prior to each sidedress N application scheduled by the cooperating growers, a composite soil sample (top 30 cm) was collected and analyzed for NO3-N. No fertilizer was applied in the PSNT plot at that sidedressing if NO3-N was >20 mg·kg-1; if NO3-N was lower than that threshold, only enough N was applied to increase soil available N to ≈20 mg·kg-1. The productivity and N status of PSNT plots were compared to adjacent plots receiving the growers' standard N fertilization. Cooperating growers applied a seasonal average of 257 kg·ha-1 N, including one to three sidedressings containing 194 kg·ha-1 N. Sidedressing based on PSNT decreased total seasonal and sidedress N application by an average of 43% and 57%, respectively. The majority of the N savings achieved with PSNT occurred at the first sidedressing. There was no significant difference between PSNT and grower N management across fields in lettuce yield or postharvest quality, and only small differences in crop N uptake. At harvest, PSNT plots had on average 8 mg·kg-1 lower residual NO3-N in the top 90 cm of soil than the grower fertilization rate plots, indicating a substantial reduction in subsequent NO3-N leaching hazard. We conclude that PSNT is a reliable management tool that can substantially reduce unnecessary N fertilization in lettuce production.


Sign in / Sign up

Export Citation Format

Share Document