scholarly journals Nitrogen leaching from N limited forest ecosystems: the MERLIN model applied to Gårdsjön, Sweden

1998 ◽  
Vol 2 (4) ◽  
pp. 415-429 ◽  
Author(s):  
O. J. Kjønaas ◽  
R. F. Wright

Abstract. Chronic deposition of inorganic nitrogen (N) compounds from the atmosphere to forested ecosystems can alter the status of a forest ecosystem from N-limited towards N-rich, which may cause, among other things, increased leaching of inorganic N below the rooting zone. To assess the time aspects of excess N leaching, a process-oriented dynamic model, MERLIN (Model of Ecosystem Retention and Loss of Inorganic Nitrogen), was tested on an N-manipulated catchment at Gårdsjön, Sweden (NITREX project). Naturally generated mature Norway spruce dominates the catchment with Scots pine in drier areas. Since 1991, ammonium nitrate (NH4NO3) solution at a rate of about 35 kg N ha-1 yr-1 (250 mmol m-2 yr-1) has been sprinkled weekly, to simulate increased atmospheric N deposition. MERLIN describes C and N cycles, where rates of uptake and cycling between pools are governed by the C/N ratios of plant and soil pools. The model is calibrated through a hindcast period and then used to predict future trends. A major source of uncertainty in model calibration and prediction is the paucity of good historical information on the specific site and stand history over the hindcast period 1930 to 1990. The model is constrained poorly in an N-limited system. The final calibration, therefore, made use of the results from the 6-year N addition experiment. No independent data set was available to provide a test for the model calibration. The model suggests that most N deposition goes to the labile (LOM) and refractory (ROM) organic matter pools. Significant leaching is predicted to start as the C/N ratio in LOM is reduced from the 1990 value of 35 to <28. At ambient deposition levels, the system is capable of retaining virtually all incoming N over the next 50 years. Increased decomposition rates, however, could simulate nitrate leaching losses. The rate and capacity of N assimilation as well as the change in carbon dynamics are keys to ecosystem changes. Because the knowledge of these parameters is currently inadequate, the model has a limited ability to predict N leaching from currently N-limited coniferous forest ecosystems in Scandinavia. The model is a useful tool for bookkeeping of N pools and fluxes, and it is an important contribution to further development of qualitative understanding of forest N cycles.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ru Yang ◽  
Masaaki Chiwa

AbstractThis study aimed to evaluate nitrogen (N) leaching from Japanese cedar, the main plantation species in Japan, in response to elevated atmospheric N deposition. N leaching and possible factors, including soil nitrification, tree N uptake, and topographic steepness, were evaluated in mature (64–69 year) Japanese cedar trees planted on steep slopes (25°–40°) and neighboring Japanese oak plantations in suburban forests, which served as reference sites. N fertilization (50 kg N ha−1 year−1 as ammonium nitrate) was conducted to evaluate the response of N leaching to an elevated inorganic N pool in the surface soil. The soil water nitrate (NO3−) concentration below the rooting zone in the Japanese cedar forest (607 ± 59 μmol L−1) was much higher than that in the Japanese oak plantations (8.7 ± 8.1 μmol L−1) and increased immediately after fertilization, indicating high N leaching from the Japanese cedar plantations. The relatively low N uptake by Japanese cedar planted on the steep slopes could be an important contributor to the high N leaching. This study highlights the importance of vegetation composition for managing the water quality in headwater streams from forest ecosystems disturbed by atmospheric N deposition.


2012 ◽  
Vol 79 (4) ◽  
pp. 1191-1199 ◽  
Author(s):  
Sarah D. Eisenlord ◽  
Zachary Freedman ◽  
Donald R. Zak ◽  
Kai Xue ◽  
Zhili He ◽  
...  

ABSTRACTFuture rates of anthropogenic N deposition can slow the cycling and enhance the storage of C in forest ecosystems. In a northern hardwood forest ecosystem, experimental N deposition has decreased the extent of forest floor decay, leading to increased soil C storage. To better understand the microbial mechanisms mediating this response, we examined the functional genes derived from communities of actinobacteria and fungi present in the forest floor using GeoChip 4.0, a high-throughput functional-gene microarray. The compositions of functional genes derived from actinobacterial and fungal communities was significantly altered by experimental nitrogen deposition, with more heterogeneity detected in both groups. Experimental N deposition significantly decreased the richness and diversity of genes involved in the depolymerization of starch (∼12%), hemicellulose (∼16%), cellulose (∼16%), chitin (∼15%), and lignin (∼16%). The decrease in richness occurred across all taxonomic groupings detected by the microarray. The compositions of genes encoding oxidoreductases, which plausibly mediate lignin decay, were responsible for much of the observed dissimilarity between actinobacterial communities under ambient and experimental N deposition. This shift in composition and decrease in richness and diversity of genes encoding enzymes that mediate the decay process has occurred in parallel with a reduction in the extent of decay and accumulation of soil organic matter. Our observations indicate that compositional changes in actinobacterial and fungal communities elicited by experimental N deposition have functional implications for the cycling and storage of carbon in forest ecosystems.


2021 ◽  
Author(s):  
Yinliu Wang ◽  
Signe Lett ◽  
Kathrin Rousk

Abstract Moss-associated nitrogen (N2) fixation is one of the main inputs of new N in pristine ecosystems that receive low amounts of atmospheric N deposition. Previous studies have shown that N2 fixation is inhibited by inorganic N (IN) inputs, but if N2 fixation in mosses is similarly affected by organic N (ON) remains unknown. Here, we assessed N2 fixation in two dominant mosses in boreal forests (Pleurozium schreberi and Sphagnum capillifolium) in response to different levels of N, simulating realistic (up to 4 kg N ha−1 yr−1) and extreme N deposition rates in pristine ecosystems (up to 20 kg N ha−1 yr−1) of IN (NH4NO3) and ON (alanine and urea). We also assessed if N2 fixation can recover from the N additions. In the realistic scenario, N2 fixation was inhibited by increasing NH4NO3 additions in P. schreberi but not in S. capillifolium, and alanine and urea stimulated N2 fixation in both moss species. In contrast, in the extreme N additions, increasing N inputs inhibited N2 fixation in both moss species and all N forms. Nitrogen fixation was more sensitive to N inputs in P. schreberi than in S. capillifolium and was higher in the recovery phase after the realistic compared to the extreme N additions. These results demonstrate that N2 fixation in mosses is less sensitive to organic than inorganic N inputs and highlight the importance of considering different N forms and species-specific responses when estimating the impact of N inputs on ecosystem functions such as moss-associated N2 fixation.


1998 ◽  
Vol 2 (4) ◽  
pp. 399-414 ◽  
Author(s):  
R. F. Wright ◽  
C. Beier ◽  
B. J. Cosby

Abstract. The catchment scale-experiments of the RAIN and CLIMEX projects conducted on boreal forest ecosystems at Risdalsheia, southernmost Norway, provide a unique set of data on the flux of nitrogen (N) in runoff following changes in N deposition, carbon dioxide (CO2) level and temperature. MERLIN (Model of Ecosystem Retention and Loss of Inorganic Nitrogen), a recently-developed model that focuses on N leaching, provides a means by which these data can be placed into a quantitative framework. The features of the N flux in runoff at Risdalsheia to be explained include (1) leaching of about 30-50 mmol m-2 yr-1 (30-40% of N deposition) during the period 1985-1997 at reference catchments, (2) rapid and dramatic reduction in N leaching following experimental reduction in N deposition in 1985 at KIM catchment, (3) increased flux of about 5 mmol m-2 yr-1 following onset of 3-5°C warming and increased CO2 in 1995 at KIM catchment, and (4) increased flux of about 12 mmol m-2 yr-1 following 3-5°C warming of soil in 1995 at EGIL catchment. One set of calibrated model parameters is sufficient to simulate the changes in N runoff at both experimental catchments for both of the manipulations. The model support the conceptual picture of the soil as the major sink for N inputs from deposition with N accumulating in both the forest floor (labile organic matter LOM) and the bulk soil (refractory organic matter ROM). As the molar carbon/nitrogen (C/N) ratio of LOM decreases to below 23, progressively less N is immobilised and more goes to runoff. The model also supports the conceptual picture of increased rate of decomposition of old soil organic matter in response to higher temperature. An increase of 5% is sufficient to produce the 5-12 mmol m-2 yr-1 increase in N flux in runoff observed at the 2 experimental catchments. The MERLIN simulations are consistent with measurements of increase in net mineralisation rates (per catchment area by 70 mmol m-2 yr-1) and N contents in foliage in treated and reference areas before and after onset of treatment. Runoff provides a very sensitive indicator of changes in N cycling within the ecosystem. Small changes in key processes such as N mineralisation give rise to large relative changes in N flux. Uncertainties in measurements are generally much larger than changes indicated by the model calibration.


2008 ◽  
Vol 5 (2) ◽  
pp. 339-352 ◽  
Author(s):  
Y. T. Fang ◽  
P. Gundersen ◽  
J. M. Mo ◽  
W. X. Zhu

Abstract. The nitrogen (N) emissions to the atmosphere and N deposition to forest ecosystems are increasing rapidly in Southeast Asia, but little is known about the fates and effects of elevated N deposition in forest ecosystems in this warm and humid region. Here we report the concentrations and fluxes of dissolved inorganic (DIN) and organic N (DON) in precipitation, throughfall, surface runoff and soil solution for three subtropical forests in a region of South China under high air pollution over two years (2004 and 2005), to investigate how deposited N is processed, and to examine the importance of DON in the N budget. The precipitation DIN input was 32–34 kg N ha−1 yr−1. An additional input of 18 kg N ha−1 yr−1 as DON was measured in 2005, which to our knowledge is the highest DON flux ever measured in precipitation. A canopy uptake of DIN was indicated in two young conifer dominated forests (72–85% of DIN input reached the floor in throughfall), whereas no uptake occurred in an old-growth broadleaf forest. The DON fluxes in throughfall were similar to that in precipitation in all forests. In the younger forests, DIN was further retained in the soil, with 41–63% of precipitation DIN leached below the 20-cm soil depth. Additionally, about half of the DON input was retained in these forests. The N retention in two young aggrading forests (21–28 kg N ha−1 yr−1) was in accordance with the estimates of N accumulation in biomass and litter accretion. In the old-growth forest, no N retention occurred, but rather a net loss of 8–16 kg N ha−1 yr−1 from the soil was estimated. In total up to 60 kg N ha−1 yr−1 was leached from the old-growth forest, indicating that this forest was completely N saturated and could not retain additional anthropogenic N inputs. We found that the majority of DIN deposition as well as of DIN leaching occurred in the rainy season (March to August) and that monthly DIN concentrations and fluxes in leaching were positively related to those in throughfall in all three forests, implying that part of the N leaching was hydrologically driven. Our results suggest that long-term high N deposition has caused elevated N leaching in all three forest types although most pronounced in the old-growth forest where wood increment was negligible or even negative. N availability even exceeded the biotic N demand in the young aggrading forests, with intensive rain in the growing season further enhancing N leaching in these forests.


2009 ◽  
Vol 40 (2-3) ◽  
pp. 187-197
Author(s):  
M. N. Futter ◽  
R. A. Skeffington ◽  
P. G. Whitehead ◽  
F. Moldan

Increased atmospheric deposition of inorganic nitrogen (N) may lead to increased leaching of nitrate (NO3−) to surface waters. The mechanisms responsible for, and controls on, this leaching are matters of debate. An experimental N addition has been conducted at Gårdsjön, Sweden to determine the magnitude and identify the mechanisms of N leaching from forested catchments within the EU funded project NITREX. The ability of INCA-N, a simple process-based model of catchment N dynamics, to simulate catchment-scale inorganic N dynamics in soil and stream water during the course of the experimental addition is evaluated. Simulations were performed for 1990–2002. Experimental N addition began in 1991. INCA-N was able to successfully reproduce stream and soil water dynamics before and during the experiment. While INCA-N did not correctly simulate the lag between the start of N addition and NO3− breakthrough, the model was able to simulate the state change resulting from increased N deposition. Sensitivity analysis showed that model behaviour was controlled primarily by parameters related to hydrology and vegetation dynamics and secondarily by in-soil processes.


2019 ◽  
Vol 7 (2) ◽  
pp. 430-440 ◽  
Author(s):  
Yang Gao ◽  
Feng Zhou ◽  
Philippe Ciais ◽  
Chiyuan Miao ◽  
Tao Yang ◽  
...  

Abstract In the past three decades, China has built more than 87 000 dams with a storage capacity of ≈6560 km3 and the total surface area of inland water has increased by 6672 km2. Leaching of N from fertilized soils to rivers is the main source of N pollution in China, but the exposure of a growing inland water area to direct atmospheric N deposition and N leaching caused by N deposition on the terrestrial ecosystem, together with increased N deposition and decreased N flow, also tends to raise N concentrations in most inland waters. The contribution of this previously ignored source of  N deposition to freshwaters is estimated in this study, as well as mitigation strategies. The results show that the annual amounts of N depositions ranged from 4.9 to 16.6 kg · ha−1 · yr−1 in the 1990s to exceeding 20 kg · ha−1 · yr−1 in the 2010s over most of regions in China, so the total mass of ΔN (the net contribution of N deposition to the increase in N concentration) for lakes, rivers and reservoirs change from 122.26 Gg N · yr−1 in the 1990s to 237.75 Gg N · yr−1 in the 2010s. It is suggested that reducing the N deposition from various sources, shortening the water-retention time in dams and decreasing the degree of regulation for rivers are three main measures for preventing a continuous increase in the N-deposition pollution to inland water in China.


Author(s):  
Alla Varenik ◽  
Alla Varenik ◽  
Sergey Konovalov ◽  
Sergey Konovalov

Atmospheric precipitations can be an important source of nutrients to open and coastal zones of marine ecosystem. Jickells [1] has published that atmospheric depositions can sup-port 5-25% of nitrogen required to primary production. Bulk atmospheric precipitations have been collected in a rural location at the Black Sea Crimean coast – Katsiveli settlement, and an urban location – Sevastopol city. Samples have been analyzed for inorganic fixed nitrogen (IFN) – nitrate, nitrite, and ammonium. Deposi-tions have been calculated at various space and time scales. The monthly volume weighted mean concentration of IFN increases from summer to winter in both locations. A significant local source of IFN has been revealed for the urban location and this source and its spatial influence have been quantified. IFN deposition with atmospheric precipitations is up to 5% of its background content in the upper 10 m layer of water at the north-western shelf of the Black Sea. Considering Redfield C:N ratio (106:16) and the rate of primary production (PP) in coastal areas of the Black Sea of about 100-130 g C m-2 year-1 we have assessed that average atmospheric IFN depositions may intensify primary production by 4.5% for rural locations, but this value is increased many-fold in urban locations due to local IFN sources.


Sign in / Sign up

Export Citation Format

Share Document