scholarly journals The impact of damage-associated molecules released from canine tumor cells on gene expression in macrophages

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shotaro Eto ◽  
Hideyuki Yanai ◽  
Sho Hangai ◽  
Daiki Kato ◽  
Ryohei Nishimura ◽  
...  

AbstractDying or damaged cells that are not completely eradicated by the immune system release their intracellular components in the extracellular space. Aberrant exposure of the damage-associated molecules to the immune system is often associated with inflammation and cancer pathogenesis. Thus, elucidating the role of damage-associated molecules in inducing sterile immune responses is crucial. In this study, we show that prostaglandin E2 (PGE2) is produced in the supernatants from several types of canine necrotic tumor cell lines. Inhibition of PGE2 production by indomethacin, a potent inhibitor of cyclooxygenase (COX) enzymes, induces the expression of tumor necrosis factor (Tnf) mRNA in the necrotic tumor cell supernatants. These results comply with the previous observations reported in mouse cell lines. Furthermore, comprehensive ribonucleic acid-sequencing (RNA-seq) analysis revealed that three categories of genes were induced by the damage-associated molecules: (i) a group of PGE2-inducible genes, (ii) genes that promote inflammation and are suppressed by PGE2, and (iii) a group of genes not suppressed by PGE2. Collectively, our findings reveal the hitherto unknown immune regulatory system by PGE2 and damage-associated molecules, which may have clinical implications in inflammation and cancer.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Sunish Mohanan ◽  
Brian D. Cherrington ◽  
Sachi Horibata ◽  
John L. McElwee ◽  
Paul R. Thompson ◽  
...  

The peptidylarginine deiminases (PADs) are a family of posttranslational modification enzymes that catalyze the conversion of positively charged protein-bound arginine and methylarginine residues to the uncharged, nonstandard amino acid citrulline. This enzymatic activity is referred to as citrullination or, alternatively, deimination. Citrullination can significantly affect biochemical pathways by altering the structure and function of target proteins. Five mammalian PAD family members (PADs 1–4 and 6) have been described and show tissue-specific distribution. Recent reviews on PADs have focused on their role in autoimmune diseases. Here, we will discuss the potential role of PADs in tumor progression and tumor-associated inflammation. In the context of cancer, increasing clinical evidence suggests that PAD4 (and possibly PAD2) has important roles in tumor progression. The link between PADs and cancer is strengthened by recent findings showing that treatment of cell lines and mice with PAD inhibitors significantly suppresses tumor growth and, interestingly, inflammatory symptoms. At the molecular level, transcription factors, coregulators, and histones are functional targets for citrullination by PADs, and citrullination of these targets can affect gene expression in multiple tumor cell lines. Next generation isozyme-specific PAD inhibitors may have therapeutic potential to regulate both the inflammatory tumor microenvironment and tumor cell growth.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 584
Author(s):  
Natalia Nunez ◽  
Louis Réot ◽  
Elisabeth Menu

Interactions between the immune system and the microbiome play a crucial role on the human health. These interactions start in the prenatal period and are critical for the maturation of the immune system in newborns and infants. Several factors influence the composition of the infant’s microbiota and subsequently the development of the immune system. They include maternal infection, antibiotic treatment, environmental exposure, mode of delivery, breastfeeding, and food introduction. In this review, we focus on the ontogeny of the immune system and its association to microbial colonization from conception to food diversification. In this context, we give an overview of the mother–fetus interactions during pregnancy, the impact of the time of birth and the mode of delivery, the neonate gastrointestinal colonization and the role of breastfeeding, weaning, and food diversification. We further review the impact of the vaccination on the infant’s microbiota and the reciprocal case. Finally, we discuss several potential therapeutic interventions that might help to improve the newborn and infant’s health and their responses to vaccination. Throughout the review, we underline the main scientific questions that are left to be answered and how the non-human primate model could help enlighten the path.


2020 ◽  
Vol 9 (1) ◽  
pp. 192 ◽  
Author(s):  
Alexandre Quilbe ◽  
Olivier Moralès ◽  
Martha Baydoun ◽  
Abhishek Kumar ◽  
Rami Mustapha ◽  
...  

To date, pancreatic adenocarcinoma (ADKP) is a devastating disease for which the incidence rate is close to the mortality rate. The survival rate has evolved only 2–5% in 45 years, highlighting the failure of current therapies. Otherwise, the use of photodynamic therapy (PDT), based on the use of an adapted photosensitizer (PS) has already proved its worth and has prompted a growing interest in the field of oncology. We have developed a new photosensitizer (PS-FOL/PS2), protected by a recently published patent (WO2019 016397-A1, 24 January 2019). This photosensitizer is associated with an addressing molecule (folic acid) targeting the folate receptor 1 (FOLR1) with a high affinity. Folate binds to FOLR1, in a specific way, expressed in 100% of ADKP or over-expressed in 30% of cases. The first objective of this study is to evaluate the effectiveness of this PS2-PDT in four ADKP cell lines: Capan-1, Capan-2, MiapaCa-2, and Panc-1. For this purpose, we first evaluated the gene and protein expression of FOLR1 on four ADKP cell lines. Subsequently, we evaluated PS2’s efficacy in our cell lines and we assessed the impact of PDT on the secretome of cancer cells and its impact on the immune system. Finally, we evaluate the PDT efficacy on a humanized SCID mouse model of pancreatic cancer. In a very interesting way, we observed a significant increase in the proliferation of activated-human PBMC when cultured with conditioned media of ADKP cancer cells subjected to PDT. Furthermore, to evaluate in vivo the impact of this new PS, we analyzed the tumor growth in a humanized SCID mice model of pancreatic cancer. Four conditions were tested: Untreated, mice (nontreated), mice with PS (PS2), mice subjected to illumination (Light only), and mice subjected to illumination in the presence of PS (PDT). We noticed that the mice subjected to PDT presented a strong decrease in the growth of the tumor over time after illumination. Our investigations have not only suggested that PS2-PDT is an effective therapy in the treatment of PDAC but also that it activates the immune system and could be considered as a real adjuvant for anti-cancer vaccination. Thus, this new study provides new treatment options for patients in a therapeutic impasse and will provide a new arsenal in the fight against PDAC.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3198 ◽  
Author(s):  
Francesco Pecora ◽  
Federica Persico ◽  
Alberto Argentiero ◽  
Cosimo Neglia ◽  
Susanna Esposito

Viral infections are a leading cause of morbidity and mortality worldwide, and the importance of public health practices including handwashing and vaccinations in reducing their spread is well established. Furthermore, it is well known that proper nutrition can help support optimal immune function, reducing the impact of infections. Several vitamins and trace elements play an important role in supporting the cells of the immune system, thus increasing the resistance to infections. Other nutrients, such as omega-3 fatty acids, help sustain optimal function of the immune system. The main aim of this manuscript is to discuss of the potential role of micronutrients supplementation in supporting immunity, particularly against respiratory virus infections. Literature analysis showed that in vitro and observational studies, and clinical trials, highlight the important role of vitamins A, C, and D, omega-3 fatty acids, and zinc in modulating the immune response. Supplementation with vitamins, omega 3 fatty acids and zinc appears to be a safe and low-cost way to support optimal function of the immune system, with the potential to reduce the risk and consequences of infection, including viral respiratory infections. Supplementation should be in addition to a healthy diet and fall within recommended upper safety limits set by scientific expert bodies. Therefore, implementing an optimal nutrition, with micronutrients and omega-3 fatty acids supplementation, might be a cost-effective, underestimated strategy to help reduce the burden of infectious diseases worldwide, including coronavirus disease 2019 (COVID-19).


2021 ◽  
Vol 22 (17) ◽  
pp. 9460
Author(s):  
Helmut Segner ◽  
Christyn Bailey ◽  
Carolina Tafalla ◽  
Jun Bo

The impact of anthropogenic contaminants on the immune system of fishes is an issue of growing concern. An important xenobiotic receptor that mediates effects of chemicals, such as halogenated aromatic hydrocarbons (HAHs) and polyaromatic hydrocarbons (PAHs), is the aryl hydrocarbon receptor (AhR). Fish toxicological research has focused on the role of this receptor in xenobiotic biotransformation as well as in causing developmental, cardiac, and reproductive toxicity. However, biomedical research has unraveled an important physiological role of the AhR in the immune system, what suggests that this receptor could be involved in immunotoxic effects of environmental contaminants. The aims of the present review are to critically discuss the available knowledge on (i) the expression and possible function of the AhR in the immune systems of teleost fishes; and (ii) the impact of AhR-activating xenobiotics on the immune systems of fish at the levels of immune gene expression, immune cell proliferation and immune cell function, immune pathology, and resistance to infectious disease. The existing information indicates that the AhR is expressed in the fish immune system, but currently, we have little understanding of its physiological role. Exposure to AhR-activating contaminants results in the modulation of numerous immune structural and functional parameters of fish. Despite the diversity of fish species studied and the experimental conditions investigated, the published findings rather uniformly point to immunosuppressive actions of xenobiotic AhR ligands in fish. These effects are often associated with increased disease susceptibility. The fact that fish populations from HAH- and PAH-contaminated environments suffer immune disturbances and elevated disease susceptibility highlights that the immunotoxic effects of AhR-activating xenobiotics bear environmental relevance.


2009 ◽  
Author(s):  
Katarzyna Miekus ◽  
Danuta Jarocha ◽  
Elzbieta Trzyna ◽  
Marcin Majka

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 11101-11101
Author(s):  
Erica Michelle Stringer ◽  
Maxwell N. Skor ◽  
Gini F. Fleming ◽  
Suzanne D. Conzen

11101 Background: Ovarian cancer is the leading cause of death from gynecologic malignancies. High-grade serous ovarian cancer (HGS-OvCa) is often initially sensitive to platinum-based therapy, but relapse rates remain high. The TCGA recently found that HGS-OvCas have a gene expression and mutational profile similar to that of triple negative breast cancer (TNBC). Previously, our group demonstrated that dexamethasone treatment decreased chemotherapy-induced tumor cell apoptosis in TNBC and HGS-OvCa cell lines. We have also shown that glucocorticoid receptor (GR) activation induces expression of anti-apoptotic genes SGK1 and MKP1/DUSP1 in both HGS-OvCa and TNBC cell lines and in primary human ovarian and TNBC tumors. Methods: We examined glucocorticoid receptor (GR), estrogen receptor (ER), and progesterone receptor (PR) expression in a panel of HGS-OvCa cell lines by Western analysis and qRT-PCR. We also performed apoptosis assays with and without mifepristone, glucocorticoid and/or chemotherapy treatment using IncuCyte live-cell imaging technology in order to measure the effect of GR modulation of chemotherapy sensitivity. Results: HGS-OvCa cell lines (including CAOV3, HeyA8, SKOV3, Monty-1) all had detectable GR expression; HeyA8, SKOV3, and Monty-1 cell lines expressed very low levels of ER-alpha while all other HGS-OvCa cell lines did not express any detectable ER-alpha. Furthermore, none of the HGS-OvCa cell lines tested expressed PR.Apoptosis assays revealed that GR activation significantly inhibited gemcitabine/carboplatin-induced apoptosis in HGS-OvCa cell lines and that mifepristone could reverse this cell survival effect, presumably through GR antagonism. Conclusions: These results suggest that treatment with mifepristone, a GR antagonist, reverses GR-mediated cell survival signaling in HGS-OvCa and increases chemotherapy-induced tumor cell death. To further investigate the role of GR activity in HGS-OvCa, we are currently performing xenograft experiments with chemotherapy +/- mifepristone treatment.


2016 ◽  
Vol 22 (3) ◽  
pp. 502-512 ◽  
Author(s):  
Daniel Weber ◽  
Kylie O’Brien

Cancer-related fatigue (CRF) is a common symptom experienced in cancer patients. Depression, anxiety, and stress are associated with cancer. Depression and anxiety are also associated with CRF. At the cellular level, much is known about the impact of stress on the body generally, and its potential role in cancer. Stress, anxiety, and depression have been found to depress the immune system. Depression and stress have also been found to create inflammatory changes in the body and there is emerging evidence that inflammation is involved in cancer pathogenesis and in CRF. This article examines the relationships between stress, anxiety, depression, and cancer; relationships between anxiety and depression and CRF; and what happens at the cellular level, including impact on the immune system and emerging evidence of the role of inflammation in CRF. It also reports on research in relation to some Chinese herbal medicines that may be used to treat CRF.


2021 ◽  
Author(s):  
Zhou-Tong Dai ◽  
Yuan Xiang ◽  
Xing-Hua Liao

Abstract Background Uterine Corpus Endometrial Cancer (UCEC) is one of the three common malignant tumors of the female reproductive tract. According to reports, the cure rate of early UCEC can reach 95%. Therefore, the development of prognostic markers will help UCEC patients to find the disease earlier and develop treatment earlier. The ALDH family was first discovered to be the essential gene of the ethanol metabolism pathway in the body. Recent studies have shown that ALDH can participate in the regulation of cancer. Methods We used the gene profile data of 33 cancers in the TCGA database to analyze the expression and survival of the ALDH family. GO, KEGG, PPI multiple functional analysis was used to predict the regulatory role of ALDH family in cancer. In addition, using CCK-8, colony formation, nude mouse tumor formation and other methods, the in vitro function of UCEC cancer cell lines was tested to further confirm the key role of ALDH2 expression in the proliferation of UCEC cell lines. Finally, Lasso and Cox regression methods were used to establish an overall survival prognosis model based on ALDH2 expression. Result In our research, we explored the expression of ALDH family in 33 cancers. It was found that ALDH2 was abnormally expressed in UCEC. Besides, in vivo and in vitro experiments were conducted to explore the effect of ALDH2 expression on the proliferation of UCEC cell lines. Meanwhile, the change of its expression is not due to gene mutations, but is regulated by miR-135-3p. At the same time, the impact of ALDH2 changes on the survival of UCEC patients is deeply discussed. Finally, a nomogram for predicting survival was constructed, with a C-index of 0.798 and AUC of 0.764. Conclusion This study suggests that ALDH2 may play a crucial role in UCEC progression and has the potential as a prognostic biomarker of UCEC.


2002 ◽  
Vol 49 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Maria M Bontemps-Gracz ◽  
Agnieszka Kupiec ◽  
Ippolito Antonini ◽  
Edward Borowski

Two recently synthesized groups of acridine cytostatics containing fused heterocyclic ring(s): pyrazoloacridines (PAC) and pyrazolopyrimidoacridines (PPAC) were tested in regard to their in vitro cytotoxic activity towards a panel of sensitive and resistant human tumor cell lines. The obtained results corroborate our earlier hypothesis on the essential role of heterocyclic ring fused to the acridine moiety in the ability of acridine cytostatics to overcome multidrug resistance of tumor cells. The presence, location and kind of substituents considerably influenced both the cytotoxic activity of the derivatives and their ability to overcome multidrug resistance. The same factors also affected the cytostatics ability to differentiate between tumor cell lines with various types of drug exporting pumps.


Sign in / Sign up

Export Citation Format

Share Document