scholarly journals Compressional wave velocity measurements on mafic–ultramafic rocks under high aqueous fluid pressure and temperature help to explain low-velocity zones in the lithosphere

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Evgeny B. Lebedev ◽  
Hartmut Kern ◽  
Ninely I. Pavlenkova ◽  
Oleg A. Lukanin ◽  
Konstantin V. Lobanov ◽  
...  

AbstractDeep seismic studies have revealed that low-velocity zones mainly occurred in the continental lithosphere at the depth of 100–150 km. Their origin has not been clearly explained yet. The article demonstrates the possible scale of Vp changes in crystalline rocks of different composition. The conclusions were made on the basis of the comprehensive analysis of the experimental data obtained by the authors. The compressional wave velocities in the temperature range from 20 to 800 °C, both in dry conditions (at pressure of 600 MPa) and in the presence of aqueous fluid (at pressure of 300 MPa) were measured. It is shown that the most significant decrease of velocities (by ~ 3 km/s) in the temperature range of 400–700 °C, corresponding to the deep waveguides of the lithospheric mantle, occurs under water pressure in ultramafic rocks enriched by olivine (dunites). Such decrease is due to rock structure changes caused by olivine serpentinization reactions. It is assumed that serpentinization and/or formation of similar hydrous minerals, which are stable in a wide range of PT-conditions in olivine-rich mantle rocks due to the influence of deep fluids, may cause low-velocities zones in the upper mantle at depths of about 100 km.

Author(s):  
Trần Thanh Nhàn

In order to observe the end of primary consolidation (EOP) of cohesive soils with and without subjecting to cyclic loading, reconstituted specimens of clayey soils at various Atterberg’s limits were used for oedometer test at different loading increments and undrained cyclic shear test followed by drainage with various cyclic shear directions and a wide range of shear strain amplitudes. The pore water pressure and settlement of the soils were measured with time and the time to EOP was then determined by different methods. It is shown from observed results that the time to EOP determined by 3-t method agrees well with the time required for full dissipation of the pore water pressure and being considerably larger than those determined by Log Time method. These observations were then further evaluated in connection with effects of the Atterberg’s limit and the cyclic loading history.


Author(s):  
Akila C. Thenuwara ◽  
Pralav P. Shetty ◽  
Neha Kondekar ◽  
Chuanlong Wang ◽  
Weiyang Li ◽  
...  

A new dual-salt liquid electrolyte is developed that enables the reversible operation of high-energy sodium-metal-based batteries over a wide range of temperatures down to −50 °C.


Author(s):  
Jianxun Du ◽  
Peng Hao ◽  
Mabao Liu ◽  
Rui Xue ◽  
Lin’an Li

Because of the advantages of light weight, small size, and good maneuverability, the bio-inspired micro aerial vehicle has a wide range of application prospects and development potential in military and civil areas, and has become one of the research hotspots in the future aviation field. The beetle’s elytra possess high strength and provide the protection of the abdomen while being functional to guarantee its flight performance. In this study, the internal microstructure of beetle’s elytra was observed by scanning electron microscope (SEM), and a variety of bionic thin-walled structures were proposed and modelled. The energy absorption characteristics and protective performance of different configurations of thin-walled structures with hollow columns under impact loading was analyzed by finite element method. The parameter study was carried out to show the influence of the velocity of impactor, the impact angle of the impactor and the wall thickness of honeycomb structure. This study provides an important inspiration for the design of the protective structure of the micro aerial vehicle.


1979 ◽  
Vol 78 (1) ◽  
pp. 281-293
Author(s):  
MIKKO HARRI ◽  
ERNST FLOREY

1. Crayfish, Astacus leptodactylus, were acclimated to 12 °C and to 25 °C. Nerve muscle preparations (closer muscle of walking legs) were subjected to temperatures ranging from 6 to 32 °C. 2. The resting membrane potential of muscle fibres was found to increase with temperature in a linear manner, but with a change in slope at around 170 in cold-acclimated preparations, and around 24 °C in warm-acclimated ones. 3. Temperature acclimation shifted the temperature range of maximal amplitudes of fast and slow e.j.p.s toward the acclimation temperature. Optimal facilitation of slow e.j.p.s also occurred near the respective acclimation temperature. 4. E.j.p. decay time is nearly independent of temperature in the upper temperature range but increases steeply when the temperature falls below a critical range around 17 °C in preparations from cold-acclimated animals, and around 22 °C after acclimation to 25 °C. 5. Peak depolarizations reached by summating facilitated e.j.p.s are conspicuously independent of temperature over a wide range (slow and fast e.j.p.s of cold-acclimated preparations, fast e.j.p.s of warm-acclimated ones) which extends to higher temperatures after warm acclimation in the case of fast e.j.p.s. In warm-acclimated preparations the peak depolarization of slow e.j.p.s first falls then rises and falls again as the temperature increases from 8 to 32 °C. 6. Tension development elicited by stimulation of the slow axon at a given frequency reaches maximal values at the lower end of the temperature range in cold-acclimated preparations. The maximum is shifted towards 20 °C after warm acclimation. Fast contractions decline with temperature; possible acclimation effects are masked by the great lability of fast contractions in warm-acclimated preparations. 7. It is suggested that changes in the composition of membrane lipids may be responsible for the effects of acclimation on the electrical parameters and their characteristic temperature dependence.


Author(s):  
Lei Fan ◽  
Meiwan Yu ◽  
Aiqing Wu ◽  
Yihu Zhang

Interactions between water and rocks are the main factors affecting the deformation of rock masses on sloped banks by reservoir impoundment. The technology used in laboratory tests of water-rock interaction mechanisms cannot simulate the coupling of water, the rock structure and the initial stress environment. In this work, we develop an in situ hydromechanical true triaxial rock compression tester and apply it to investigate the coupling response of reservoir bank rocks to changing groundwater levels. The tester is composed of a sealed chamber, loader, reactor, and device for measuring deformation, which are all capable of withstanding high water pressures, and a high-precision servo controller. The maximum axial load, lateral load and water pressure are 12 000 kN, 3 000 kN and 3 MPa, respectively. The dimensions of the test specimens are 310 mm×310 mm×620 mm. The test specimens are grey-black basalts with well-developed cracks from the Xiluodu reservoir area. The results show that increasing water pressure promotes axial compression and lateral expansion, while decreasing water pressure causes axial expansion and lateral compression. A water pressure coefficient, K, is introduced as a measure of the hydromechanical coupling effect (expansion or compression) with changing groundwater level. A mechanical tester can be used to perform accurate field tests of the response of wet rocks to hydromechanical coupling. The test results provide new information about the deformation patterns of rock slopes in areas surrounding high dams and reservoirs.Thematic collection: This article is part of the Role of water in destabilizing slopes collection available at: https://www.lyellcollection.org/cc/Role-of-water-in-destabilizing-slopes


2018 ◽  
Vol 6 (41) ◽  
pp. 11178-11183 ◽  
Author(s):  
Yan Gao ◽  
Yao Cheng ◽  
Tao Hu ◽  
Zeliang Ji ◽  
Hang Lin ◽  
...  

This study highlights a highly sensitive dual-mode optical thermometer Pr3+:Gd2ZnTiO6 for thermal readings over a wide range of temperature.


2009 ◽  
Vol 73 (5) ◽  
pp. 777-796 ◽  
Author(s):  
R. Macdonald ◽  
H. E. Belkin ◽  
F. Wall ◽  
B. Baginski

AbstractElectron microprobe analyses are presented of chevkinite-group minerals from Canada, USA, Guatemala, Norway, Scotland, Italy and India. The host rocks are metacarbonates, alkaline and subalkaline granitoids, quartz-bearing pegmatites, carbonatite and an inferred K-rich tuff. The analyses extend slightly the range of compositions in the chevkinite group, e.g. the most MgO-rich phases yet recorded, and we report two further examples where La is the dominant cation in the A site. Patchily- zoned crystals from Virginia and Guatemala contain both perrierite and chevkinite compositions. The new and published analyses are used to review compositional variation in minerals of the perrierite subgroup, which can form in a wide range of host rock compositions and over a substantial pressure- temperature range. The dominant substitutions in the various cation sites and a generalized substitution scheme are described.


2021 ◽  
Author(s):  
Seyyedmaalek Momeni

<div><span>Seismic history of the North Tabriz fault (NTF), the main active fault of Northwestern Iran near Tabriz city, and its relation to the Sahand active Volcano (SND), the second high mountain of the NW Iran, and to the 11 August 2012 Ahar-Varzaghan earthquake doublet (Mw6.5&6.3) (AVD), is investigated. I infer that before AVD seismicity of the central segment of NTF close to SND was very low compared to its neighbor segments. Magmatic activities and thermal springs near central NTF close to Bostan-Abad city and low-velocity anomalies reported beneath SND toward NTF in tomography studies suggest that the existing heat due to SND magma chamber has increased the pore-fluid pressure that overcomes the effective normal stress on the central NTF, resulting in its creep behaviour. Two peaks of cumulative scalar seismic moments of earthquakes observed on both lobes of the creeping segment, confirming the strong difference in the deformation rate between these segments. On 2012, AVD struck in the 50 km North of NTF, in the same longitude range to SND and with the same right-lateral strike-slip mechanism to NTF, as a result of partial transfer of the right-lateral deformation of NW Iran toward the North of NTF on the Ahar-Varzaghan fault system. A cumulative aseismic slip equal to an Mw6.8 event is estimated for the creeping segment of NTF, posing half of the 7mmy-1 geodetic deformation has happened in the creep mode. This event has transferred a positive Coulomb stress field of >1 bar on the AVD and triggered them. Also, the western and eastern NTF segments received >4 bar of positive Coulomb stresses from the creeping segment and are probable nucleation locations for future earthquakes on NTF. The observed creep may be the reason for the NTF segmentation during the 1721AD M7.6 and 1780 AD M7.4 historical earthquakes.</span></div>


2021 ◽  
Author(s):  
Elise Kazmierczak ◽  
Sainan Sun ◽  
Frank Pattyn

<p>Sliding laws determine to a large extent the sensitivity of the Antarctic ice sheet on centennial time scales (Pattyn, 2017, Bulthuis et al, 2019, Sun et al, 2020). Especially the contrast between linear and plastic sliding laws makes the latter far more responsive to changes at the grounding line. However, most studies neglect subglacial processes linked to those sliding laws. Subglacial hydrology may also play a role in modulating the amplitude of the reaction of marine ice sheets to forcing. Subglacial processes influence the effective pressure at the base. For a hard bed system, the latter can be defined by the ice overburden pressure minus the subglacial water pressure determined by routing of subglacial meltwater through a thin film. For soft-bed systems, the effective pressure is determined from till properties and physics. Here we investigate a wide range of subglacial processes and hydrology used in ice sheet models and implemented them in one ice sheet model (f.ETISh).</p><p> </p><p>The subglacial hydrology models and till deformation models are coupled to different sliding and friction laws (linear, power law, Coulomb), leading to 24 different representations. The Antarctic ice sheet model was then forced by the ISMIP6 forcing in surface mass balance and ocean temperature until 2100 for different RCP scenarios (Seroussi et al., 2020). Furthermore, to sample the intrinsic sensitivity we performed the ABUMIP experiments (Sun et al., 2020) for the full set of subglacial characteristics.  Results demonstrate that the type of sliding law is the most determining factor in the sensitivity of the ice sheet, modulated by the subglacial hydrology.</p>


Author(s):  
Amrit Sahu ◽  
A.A.E.S Mohamed ◽  
Snehashish Panigrahy ◽  
Gilles Bourque ◽  
Henry Curran

Abstract New ignition delay time measurements (IDT) of natural gas mixtures enriched with small amounts of n-hexane and n-heptane were performed in a rapid compression machine to interpret the sensitization effect of heavier hydrocarbons on auto-ignition at gas-turbine relevant conditions. The experimental data of natural gas mixtures containing alkanes from methane to n-heptane were carried out over a wide range of temperatures (840-1050 K), pressures (20-30 bar), and equivalence ratios (f = 0.5 and 1.5). The experiments were complemented with numerical simulations using a detailed kinetic model developed to investigate the effect of n-hexane and n-heptane additions. Model predictions show that the addition of even small amounts (1-2%) of n-hexane and n-heptane can lead to an increase in reactivity by ~40-60 ms at a temperature of 700 K. The IDTs of these mixtures decrease rapidly with an increase in the concentration of up to 7.5% but becomes almost independent of the C6/C7 concentration >10%. This sensitization effect of C6 and C7 is also found to be more pronounced in the temperature range 700-900 K compared to that at higher temperatures (>900 K). The reason is attributed to the dependence of IDT primarily on H2O2(+M)??H+?H (+M) at higher temperatures while the fuel-dependent reactions such as H-atom abstraction, RO2 dissociation, or Q OOH+O2 reactions are less important compared to the temperature range 700-900 K, where they are very important.


Sign in / Sign up

Export Citation Format

Share Document