scholarly journals Enhanced thermoelectric performance of UV-curable silver (I) selenide-based composite for energy harvesting

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dabin Park ◽  
Seonmin Lee ◽  
Jooheon Kim

AbstractThermoelectric (TE) composites, with photocured resin as the matrix and Ag2Se (AS) as the filler, are synthesized by a digital-light-processing (DLP) based 3D printer. The mixture of diurethane dimethacrylate (DUDMA) and isobornyl acrylate (IBOA) is used as a UV-curable resin because of their low viscosity and high miscibility. Scanning electron microscopy (FE-SEM) images confirm that the filler retains its shape and remains after the UV-curing process. After completing curing, the mechanical and thermoelectric properties of the composite with different AS contents were measured. The addition of the AS filler increases the thermoelectric properties of the cured resin. When the AS contents increase by 30 wt.%, the maximum power factor was obtained (~ 51.5 μW/m·K2 at room temperature). Additionally, due to the phonon scattering effect between the interfaces, the thermal conductivity of composite is lower than that of pristine photoresin. The maximum thermoelectric figure of merit (ZT) is ~ 0.12, which is achieved with 30 wt.% of AS at 300 K with the enhanced power factor and reduced thermal conductivity. This study presents a novel manufacturing method for a thermoelectric composite using 3D printing.

2000 ◽  
Vol 626 ◽  
Author(s):  
Harald Beyer ◽  
Joachim Nurnus ◽  
Harald Böttner ◽  
Armin Lambrecht ◽  
Lothar Schmitt ◽  
...  

ABSTRACTThermoelectric properties of low dimensional structures based on PbTe/PbSrTe-multiple quantum-well (MQW)-structures with regard to the structural dimensions, doping profiles and levels are presented. Interband transition energies and barrier band-gap are determined from IR-transmission spectra and compared with Kronig-Penney calculations. The influence of the data evaluation method to obtain the 2D power factor will be discussed. The thermoelectrical data of our layers show a more modest enhancement in the power factor σS2 compared with former publications and are in good agreement with calculated data from Broido et al. [5]. The maximum allowed doping level for modulation doped MQW structures is determined. Thermal conductivity measurements show that a ZT enhancement can be achieved by reducing the thermal conductivity due to interface scattering. Additionally promising lead chalcogenide based superlattices for an increased 3D figure of merit are presented.


2019 ◽  
Vol 34 (02) ◽  
pp. 2050019 ◽  
Author(s):  
Y. Zhang ◽  
M. M. Fan ◽  
C. C. Ruan ◽  
Y. W. Zhang ◽  
X.-J. Li ◽  
...  

[Formula: see text] ceramic samples have a structure similar to phonon glass electronic crystals, and their thermoelectric properties can be effectively adjusted through repeated grinding and sintering. The results show that multi-sintering can make their grain refined and increase their grain boundary, which will effectively increase density and phonon scattering. Finally, multi-sintering can reduce the resistivity and thermal conductivity, thus obviously improve thermoelectric figure of merit [Formula: see text] of [Formula: see text]. The optimum [Formula: see text] value of 0.26 is achieved at 923 K by the third sintered sample.


Author(s):  
Ulises Acevedo Salas ◽  
Ismail Fourati ◽  
Jean Juraszek ◽  
Fabienne Richomme ◽  
Denis Pelloquin ◽  
...  

The strong interplay between magnetism and transport can tune the thermoelectric properties in chalcogenides and oxides. In the case of ferromagnetic CoS 2 pyrite, it was previously shown that the power factor is large at room temperature, reaching 1 mW m −1  K −2 and abruptly increases for temperatures below the Curie transition ( T C ), an increase potentially due to a magnonic effect on the Seebeck ( S ) coefficient. The too large thermal conductivity approximately equal to 10.5 W m −1  K −1 at room temperature prevents this pyrite from being a good thermoelectric material. In this work, samples belonging to the Co 1− x Fe x S 2 pyrite family ( x  = 0, 0.15 and 0.30) have thus been investigated in order to modify the thermal properties by the introduction of disorder on the Co site. We show here that the thermal conductivity can indeed be reduced by such a substitution, but that this substitution predominantly induces a reduction of the electronic part of the thermal conductivity and not of the lattice part. Interestingly, the magnonic contribution to S below T C disappears as x increases, while at high T , S tends to a very similar value (close to −42 µV K −1 ) for all the samples investigated. This article is part of a discussion meeting issue ‘Energy materials for a low carbon future’.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2270
Author(s):  
Sang-il Kim ◽  
Jiwoo An ◽  
Woo-Jae Lee ◽  
Se Kwon ◽  
Woo Nam ◽  
...  

Nanostructuring is considered one of the key approaches to achieve highly efficient thermoelectric alloys by reducing thermal conductivity. In this study, we investigated the effect of oxide (ZnO and SnO2) nanolayers at the grain boundaries of polycrystalline In0.2Yb0.1Co4Sb12 skutterudites on their electrical and thermal transport properties. Skutterudite powders with oxide nanolayers were prepared by atomic layer deposition method, and the number of deposition cycles was varied to control the coating thickness. The coated powders were consolidated by spark plasma sintering. With increasing number of deposition cycle, the electrical conductivity gradually decreased, while the Seebeck coefficient changed insignificantly; this indicates that the carrier mobility decreased due to the oxide nanolayers. In contrast, the lattice thermal conductivity increased with an increase in the number of deposition cycles, demonstrating the reduction in phonon scattering by grain boundaries owing to the oxide nanolayers. Thus, we could easily control the thermoelectric properties of skutterudite materials through adjusting the oxide nanolayer by atomic layer deposition method.


2015 ◽  
Vol 731 ◽  
pp. 488-491
Author(s):  
Fu Qiang Chu ◽  
Yu Xin Liu ◽  
Chang Li Xu

The bonding mechanism between water-based UV curable ink and active groups on paper’s fiber during curing process was studied in this paper. Low viscosity water-based UV-cured resin was synthesized by epoxy resins, epoxy diluent, acrylic acid and maleic anhydride in the presence of catalyst. The viscosity of the synthesis system and synthetic products were significantly reduced when epoxy diluent was added to replace parts of the epoxy resin. Epoxy diluent was very useful in reducing the viscosity of the product, but over-dose would have negative effects on the quality of the cured film. The water-based epoxy acrylate prepolymer was used as the substitution for the ink to investigate the binding mechanism between the active groups of prepolymer and fiber under UV irradiation. The prepolymer and photoinitiator were mixed and the mixture was diluted to an appropriate viscosity by a small amount of water, then printed on the paper by the method of analog printing and curred by UV curing machine. The printed paper was used to extract lignin by enzymatic/mild acidolysis. FT-IR was used to characterize the changes of the active groups in lignin. The results showed that the changes of active groups in lignin were founded in the existence of ultraviolet and photoinitiator, which consistent with the change of double bonds in prepolymer. The free radicals produced by photoinitiator in curing process not only promoted the double bonds to polymerize, but also accelerated the active groups of lignin binding. Experiments show that chemical bonds exist between them.


2011 ◽  
Vol 695 ◽  
pp. 65-68 ◽  
Author(s):  
Kwan Ho Park ◽  
Il Ho Kim

Co4-xFexSb12-ySny skutterudites were synthesized by mechanical alloying and hot pressing, and thermoelectric properties were examined. The carrier concentration increased by doping and thereby the electrical conductivity increased compared with intrinsic CoSb3. Every specimen had a positive Seebeck coefficient. Fe doping caused a decrease in the Seebeck coefficient but it could be enhanced by Fe/Sn double doping possibly due to charge compensation. The thermal conductivity was desirably very low and this originated from ionized impurity-phonon scattering. Thermoelectric properties were improved remarkably by Fe/Sn doping, and a maximum figure of merit, ZT = 0.5 was obtained at 723 K in the Co3FeSb11.2Sn0.8 specimen.


2010 ◽  
Vol 650 ◽  
pp. 126-131 ◽  
Author(s):  
Hong Fu ◽  
Peng Zhan Ying ◽  
J.L. Cui ◽  
Y.M. Yan ◽  
X.J. Zhang

Solid solution formation is a common and effective way to reduce the lattice thermal conductivity for thermoelectric materials because of additional phonon scattering by point defects and grain boundaries. In the present work we prepared In2Te3–SnTe compounds using a mild solidification technique and evaluated their thermoelectric properties in the temperature range from 318705 K. Measurements reveal that the transport properties are strongly dependent on the chemical composition  In2Te3 content, and lattice thermal conductivity significantly reduces above a minimum In2Te3 concentration, which can possibly be explained by an introduction of the vacancy on the indium sublattice and periodical vacancy planes. The highest thermoelectric figure of merit ZT of 0.19 can be achieved at 705 K, and a big improvement of In2Te3 based alloys would be expected if a proper optimization to the chemical compositions and structures were made.


2006 ◽  
Vol 129 (4) ◽  
pp. 492-499 ◽  
Author(s):  
A. Bulusu ◽  
D. G. Walker

Several new reduced-scale structures have been proposed to improve thermoelectric properties of materials. In particular, superlattice thin films and wires should decrease the thermal conductivity, due to increased phonon boundary scattering, while increasing the local electron density of states for improved thermopower. The net effect should be increased ZT, the performance metric for thermoelectric structures. Modeling these structures is challenging because quantum effects often have to be combined with noncontinuum effects and because electronic and thermal systems are tightly coupled. The nonequilibrium Green’s function (NEGF) approach, which provides a platform to address both of these difficulties, is used to predict the thermoelectric properties of thin-film structures based on a limited number of fundamental parameters. The model includes quantum effects and electron-phonon scattering. Results indicate a 26–90 % decrease in channel current for the case of near-elastic, phase-breaking, electron-phonon scattering for single phonon energies ranging from 0.2 meV to 60 meV. In addition, the NEGF model is used to assess the effect of temperature on device characteristics of thin-film heterojunctions whose applications include thermoelectric cooling of electronic and optoelectronic systems. Results show the predicted Seebeck coefficient to be similar to measured trends. Although superlattices have been known to show reduced thermal conductivity, results show that the inclusion of scattering effects reduces the electrical conductivity leading to a significant reduction in the power factor (S2σ).


2006 ◽  
Vol 321-323 ◽  
pp. 1360-1364
Author(s):  
Wang Kee Min ◽  
Chang Ho Lee ◽  
Yong Ho Park ◽  
Ik Min Park

An effect of anisotropy on the thermoelectric properties of Bi1Sb3Te6 added with Au alloys prepared by a mechanical alloying process has been studied. The conduction properties including electrical conductivity and thermal conductivity were increased with Au content. The electrical conductivity and the power factor of the perpendicular direction to the pressing direction were larger than those of the parallel direction to the pressing direction. The intensity of (1 1 0) perpendicular plane was larger than that of the parallel plane. It was suggested that the increase of intensity of the (1 1 0) plane would contribute to improve the thermoelectric performance. Although the power factor and thermal conductivity revealed the anisotropic behavior with direction, the Z value showed almost the equal value regardless of direction. From these results, it appeared that the Z value of the Bi1Sb3Te6 added with Au alloy prepared by powder metallurgy process was almost isotropic.


2000 ◽  
Vol 626 ◽  
Author(s):  
Anucha Watcharapasorn ◽  
Robert C. DeMattei ◽  
Robert S. Feigelson ◽  
Thierry Caillat ◽  
Alexander Borshchevsky ◽  
...  

ABSTRACTSamples of CoP3, CoAs3 and CoP1.5As1.5 have been synthesized and their thermoelectric properties measured. All three samples show semiconducting behavior. The Seebeck coefficients of CoP3 and CoAs3 are weakly dependent on temperature and are relatively small with maximum values of about 40 and 50 μV/K, respectively. The Seebeck coefficient of the solid solution gradually decreases with increasing temperature and the values are larger than those of CoP3 and CoAs3 in the temperature range investigated, with a maximum value of about 89 μV/K near room temperature. The thermal conductivity of CoP3 and CoAs3 are higher than that of CoSb3, as can be expected from the effect of anionic size on lattice vibration. A substantial reduction in thermal conductivity was observed for the solid solution compared to the constituent binary compounds due to additional phonon scattering from lattice disorder and other possible point defects such as vacancies. Other compositions in the CoP3-xAsx system have also been synthesized and their thermoelectric properties are currently being investigated to provide essential information about lattice thermal conductivity reduction by point defect scattering and to further develop strategies for optimizing the thermoelectric properties of skutterudite materials.


Sign in / Sign up

Export Citation Format

Share Document