scholarly journals Scalable approach towards specific and ultrasensitive cation sensing in harsh environmental conditions by engineering the analyte-transducer interface

2021 ◽  
Author(s):  
Sudeshna Mondal ◽  
Chandramouli Subramaniam

Affordable and high-performing sensing platforms are becoming increasingly critical for sustainable environmental monitoring and medical diagnostics. Such miniaturized and point-of-care sensing platforms need to overcome the fundamental tradeoff between ultrahigh...

Author(s):  
Antonia Perju ◽  
Nongnoot Wongkaew

AbstractLateral flow assays (LFAs) are the best-performing and best-known point-of-care tests worldwide. Over the last decade, they have experienced an increasing interest by researchers towards improving their analytical performance while maintaining their robust assay platform. Commercially, visual and optical detection strategies dominate, but it is especially the research on integrating electrochemical (EC) approaches that may have a chance to significantly improve an LFA’s performance that is needed in order to detect analytes reliably at lower concentrations than currently possible. In fact, EC-LFAs offer advantages in terms of quantitative determination, low-cost, high sensitivity, and even simple, label-free strategies. Here, the various configurations of EC-LFAs published are summarized and critically evaluated. In short, most of them rely on applying conventional transducers, e.g., screen-printed electrode, to ensure reliability of the assay, and additional advances are afforded by the beneficial features of nanomaterials. It is predicted that these will be further implemented in EC-LFAs as high-performance transducers. Considering the low cost of point-of-care devices, it becomes even more important to also identify strategies that efficiently integrate nanomaterials into EC-LFAs in a high-throughput manner while maintaining their favorable analytical performance.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Munsyi Munsyi ◽  
Muhammad Syahid Febriadi ◽  
Nahdi Saubari

Di era Internet of Things (IoT). Siapapun dapat mengakses data dimanapun dan kapanpun. Semua data yang tersimpan dapat diakses dengan menggunakan perangkat seperti smartphone, laptop, dan komputer. Salah satu dari teknologi Internet of Things adalah smart city untuk memonitoring lingkungan. Untuk dapat mengetahui kondisi dan kualitas suatu lingkungan, seseorang tidak perlu lagi menunggu pengumuman informasi atau datang ke instansi terkait di pemerintahan. Pemanfaatan IoT pada monitoring lingkungan dapat di terapkan pada bidang peternakan. Hal ini dapat membantu seseorang dalam mengetahui kualitas dari kondisi lingkungan yang akan dimanfaatkan untuk peternakan. Dalam hal ini adalah bagaimana mengetahui peternakan yang cocok untuk diterapkan dilingkungan yang dia tuju untuk membangun peternakan sapi atau peternakan ayam. Menggunakan perangkat wireless sensor networks (WSN) untuk melakukan pengambilan nilai dari kondisi lingkungan tersebut dapat membantu mengetahui kondisi dan kualitas lingkungan. IoT membantu seseorang untuk membuka usaha dibidang peternakan yang cocok untuk wilayah tersebut tanpa harus melakukan banyak survey yang menelan banyak biaya. Hanya dengan menggunakan teknologi IoT siapapun dapat mendapatkan data kualitas lingkungan yang cocok untuk membuka sebuah peternakan dengan kondisi lingkungan yang sudah diketahui sebelumnya. Kata kunci: Internet of Things, Kondisi Lingkungan, Peternakan, Smart City, WSN. In the Internet of Things era (IoT). Everyone can access the data in anywhere and anytime. All stored data can be accessed using end devices such as smartphones, laptops and computers. One of the IoT technologies is a smart city for monitoring the environment. To be able to know the condition and quality of an environment, everyone does not need to wait for the announcement of information or come to the relevant agencies in the government. Utilization of IoT on Environmental Monitoring can be applied to the field of ranch. in this case it will be used for helping someone in knowing the quality of environmental conditions that will be used for. In this case it is how to find out which ranchs are suitable to be applied in the environment from the user that he want to construct cow or chicken ranch. Using wireless sensor networks (WSN) to retrieve values from these environmental conditions can help determine the condition and quality of the environment. IoT helps someone to open a business in field of ranchs that is suitable for region without having to do many survey. Only by using IoT, anyone can get suitable environmental quality data to open a ranch with environmental conditions that have been known before.Keywords: Environmental conditions, Internet of Things, Ranch, Smart City, WSN. 


Author(s):  
Busari Sherif A. ◽  
Dunmoye Abibat F. ◽  
Akingbade Kayode F.

Data Acquisition Systems (DAS) are used for a variety of applications such as environmental monitoring, indoor climate control, health management and medical diagnostics, traffic surveillance and emergency response, disaster management among others. This paper presents the design of a DAS for monitoring environmental temperature, pressure and relative humidity. The system employs Arduino Uno microcontroller for signal processing and Zigbee transceivers operating on the 2.4 GHz license-free Industrial, Scientific and Medical (ISM) band as communication modules at both the transmitter and receiver ends. While the transmitter board houses the sensors, a GPS module and an LCD, the receiver system is interfaced with a PC which runs a developed MATLAB GUI for data display and analysis and it incorporates an SD card for data storage. The battery-powered system is a low cost, low-power consumption system which serves as a mini-weather station with real-time data logging, wireless communication and tracking capabilities.


2013 ◽  
Vol 9 ◽  
pp. 1907-1916 ◽  
Author(s):  
Catrin Goeschen ◽  
Uta Wille

Manufactured polymer materials are used in increasingly demanding applications, but their lifetime is strongly influenced by environmental conditions. In particular, weathering and ageing leads to dramatic changes in the properties of the polymers, which results in decreased service life and limited usage. Despite the heavy reliance of our society on polymers, the mechanism of their degradation upon exposure to environmental oxidants is barely understood. In this work, model systems of important structural motifs in commercial high-performing polyesters were used to study the reaction with the night-time free radical oxidant NO3 • in the absence and presence of other radical and non-radical oxidants. Identification of the products revealed ‘hot spots’ in polyesters that are particularly vulnerable to attack by NO3 • and insight into the mechanism of oxidative damage by this environmentally important radical. It is suggested that both intermediates as well as products of these reactions are potentially capable of promoting further degradation processes in polyesters under environmental conditions.


2021 ◽  
Vol 17 ◽  
Author(s):  
Rajasekhar Chokkareddy ◽  
Suvardhan Kanchi ◽  
Inamuddin

Background: While significant strides have been made to avoid mortality during the treatment of chronic diseases, it is still one of the biggest health-care challenges that have a profound effect on humanity. The development of specific, sensitive, accurate, quick, low-cost, and easy-to-use diagnostic tools is therefore still in urgent demand. Nanodiagnostics is defined as the application of nanotechnology to medical diagnostics that can offer many unique opportunities for more successful and efficient diagnosis and treatment for infectious diseases. Methods: In this review we provide an overview of infectious disease using nanodiagnostics platforms based on nanoparticles, nanodevices for point-of-care (POC) applications. Results: Current state-of-the-art and most promising nanodiagnostics POC technologies, including miniaturized diagnostic tools, nanorobotics and drug delivery systems have been fully examined for the diagnosis of diseases. It also addresses the drawbacks, problems and potential developments of nanodiagnostics in POC applications for chronic diseases. Conclusions: While progress is gaining momentum in this field and many researchers have dedicated their time in developing new smart nanodevices for POC applications for various chronic diseases, the ultimate aim of achieving longterm, reliable and continuous patient monitoring has not yet been achieved. Moreover, the applicability of the manufactured nanodevices to rural patients for on-site diagnosis, cost, and usability are the crucial aspects that require more research, improvements, and potential testing stations. Therefore, more research is needed to develop the demonstrated smart nanodevices and upgrade their applicability to hospitals away from the laboratories.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 220 ◽  
Author(s):  
Niazul I. Khan ◽  
Edward Song

Aptamers are oligonucleotides or peptides that are selected from a pool of random sequences that exhibit high affinity toward a specific biomolecular species of interest. Therefore, they are ideal for use as recognition elements and ligands for binding to the target. In recent years, aptamers have gained a great deal of attention in the field of biosensing as the next-generation target receptors that could potentially replace the functions of antibodies. Consequently, it is increasingly becoming popular to integrate aptamers into a variety of sensing platforms to enhance specificity and selectivity in analyte detection. Simultaneously, as the fields of lab-on-a-chip (LOC) technology, point-of-care (POC) diagnostics, and personal medicine become topics of great interest, integration of such aptamer-based sensors with LOC devices are showing promising results as evidenced by the recent growth of literature in this area. The focus of this review article is to highlight the recent progress in aptamer-based biosensor development with emphasis on the integration between aptamers and the various forms of LOC devices including microfluidic chips and paper-based microfluidics. As aptamers are extremely versatile in terms of their utilization in different detection principles, a broad range of techniques are covered including electrochemical, optical, colorimetric, and gravimetric sensing as well as surface acoustics waves and transistor-based detection.


2020 ◽  
Vol 8 (13) ◽  
pp. 2541-2561 ◽  
Author(s):  
Zhenli Qiu ◽  
Dianping Tang

As a newly developed and powerful analytical method, the use of photoelectrochemical (PEC) biosensors opens up new opportunities to provide wide applications in the early diagnosis of diseases, environmental monitoring and food safety detection.


Micromachines ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 3 ◽  
Author(s):  
Gorkem Memisoglu ◽  
Burhan Gulbahar ◽  
Joseba Zubia ◽  
Joel Villatoro

Förster resonance energy transfer (FRET) between two molecules in nanoscale distances is utilized in significant number of applications including biological and chemical applications, monitoring cellular activities, sensors, wireless communications and recently in nanoscale microfluidic radar design denoted by the vibrating FRET (VFRET) exploiting hybrid resonating graphene membrane and FRET design. In this article, a low hardware complexity and novel microfluidic viscosity monitoring system architecture is presented by exploiting VFRET in a novel microfluidic system design. The donor molecules in a microfluidic channel are acoustically vibrated resulting in VFRET in the case of nearby acceptor molecules detected with their periodic optical emission signals. VFRET does not require complicated hardware by directly utilizing molecular interactions detected with the conventional photodetectors. The proposed viscosity measurement system design is theoretically modeled and numerically simulated while the experimental challenges are discussed. It promises point-of-care and environmental monitoring applications including viscosity characterization of blood or polluted water.


2014 ◽  
Vol 106 (2) ◽  
pp. 417a
Author(s):  
Anna Wilkes ◽  
Benjamin Evans

Sign in / Sign up

Export Citation Format

Share Document