Diabetes diminishes typical metabolite of litchi pericarp oligomeric procyanidins (LPOPC) in urine mediated by imbalanced gut microbiota

2021 ◽  
Author(s):  
Xiaopeng Li ◽  
Yong Sui ◽  
B. Xie ◽  
Zhida Sun ◽  
Shuyi Li

Animal studies and clinical trials have shown that dietary polyphenols and polyphenol-rich foods can reduce the risk of T2D and its complications, but how diabetes regulates the metabolism of polyphenol...

Author(s):  
Yiying Zhao ◽  
Qing Jiang

ABSTRACT Accumulating evidence indicates that the gut microbiota can promote or inhibit colonic inflammation and carcinogenesis. Promotion of beneficial gut bacteria is considered a promising strategy to alleviate colonic diseases including colitis and colorectal cancer. Interestingly, dietary polyphenols, which have been shown to attenuate colitis and inhibit colorectal cancer in animal models and some human studies, appear to reach relatively high concentrations in the large intestine and to interact with the gut microbial community. This review summarizes the modulatory effects of polyphenols on the gut microbiota in humans and animals under healthy and diseased conditions including colitis and colitis-associated colorectal cancer (CAC). Existing human and animal studies indicate that polyphenols and polyphenol-rich whole foods are capable of elevating butyrate producers and probiotics that alleviate colitis and inhibit CAC, such as Lactobacillus and Bifidobacterium. Studies in colitis and CAC models indicate that polyphenols decrease opportunistic pathogenic or proinflammatory microbes and counteract disease-induced dysbiosis. Consistently, polyphenols also change microbial functions, including increasing butyrate formation. Moreover, polyphenol metabolites produced by the gut microbiota appear to have anticancer and anti-inflammatory activities, protect gut barrier integrity, and mitigate inflammatory conditions in cells and animal models. Based on these results, we conclude that polyphenol-mediated alteration of microbial composition and functions, together with polyphenol metabolites produced by the gut microbiota, likely contribute to the protective effects of polyphenols on colitis and CAC. Future research is needed to validate the causal role of the polyphenol–gut microbiota interaction in polyphenols’ anti-colitis and anti-CAC effects, and to further elucidate mechanisms underlying such interaction.


2018 ◽  
Vol 24 (2) ◽  
pp. 191-202 ◽  
Author(s):  
Midori Natsume

Background: Polyphenols widely distributed in plants, fruits and vegetables have received considerable attention on account of their physiological functions, including their antioxidant and anti-inflammatory properties. Some antioxidant components of cacao liquor prepared from fermented and roasted cacao beans, which is a major ingredient of cocoa and chocolate products, have been characterized as flavan-3-ols and procyanidin oligomers. Methods: This review focuses on a specific group of (-)-epicatechins and their oligomers, the procyanidins, in cacao products. Dietary polyphenols in cacao products have been shown to reduce hypertension, reduce platelet aggregation, improve serum lipids, and lower the incidence of atherosclerosis in animal studies and clinical trials. Conclusion: The intake of cacao products reduces hypertension and atherosclerosis on account of their physiological functions as antioxidants and anti-inflammation agents, indicating the mechanisms of prevention of hypertension and atherosclerosis by polyphenols.


2020 ◽  
Vol 20 ◽  
Author(s):  
Nur Najmi Mohamad Anuar ◽  
Nurul Iman Natasya Zulkafali ◽  
Azizah Ugusman

: Matrix metalloproteinases (MMPs) are a group of zinc-dependent metallo-endopeptidase that are responsible towards the degradation, repair and remodelling of extracellular matrix components. MMPs play an important role in maintaining a normal physiological function and preventing diseases such as cancer and cardiovascular diseases. Natural products derived from plants have been used as traditional medicine for centuries. Its active compounds, such as catechin, resveratrol and quercetin, are suggested to play an important role as MMPs inhibitors, thereby opening new insights into their applications in many fields, such as pharmaceutical, cosmetic and food industries. This review summarises the current knowledge on plant-derived natural products with MMP-modulating activities. Most of the reviewed plant-derived products exhibit an inhibitory activity on MMPs. Amongst MMPs, MMP-2 and MMP-9 are the most studied. The expression of MMPs is inhibited through respective signalling pathways, such as MAPK, NF-κB and PI3 kinase pathways, which contribute to the reduction in cancer cell behaviours, such as proliferation and migration. Most studies have employed in vitro models, but a limited number of animal studies and clinical trials have been conducted. Even though plant-derived products show promising results in modulating MMPs, more in vivo studies and clinical trials are needed to support their therapeutic applications in the future.


2021 ◽  
Vol 12 (2) ◽  
pp. 202-216
Author(s):  
Mus Azza Suhana Khairudin ◽  
Abbe Maleyki Mhd Jalil ◽  
Napisah Hussin

A diet high in polyphenols is associated with a diversified gut microbiome. Tea is the second most consumed beverage in the world, after water. The health benefits of tea might be attributed to the presence of polyphenol compounds such as flavonoids (e.g., catechins and epicatechins), theaflavins, and tannins. Although many studies have been conducted on tea, little is known of its effects on the trillions of gut microbiota. Hence, this review aimed to systematically study the effect of tea polyphenols on the stimulation or suppression of gut microbiota in humans and animals. It was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. Articles were retrieved from PubMed and Scopus databases, and data were extracted from 6 human trials and 15 animal studies. Overall, large variations were observed in terms of microbiota composition between humans and animals. A more consistent pattern of diversified microbiota was observed in animal studies. Tea alleviated the gut microbiota imbalance caused by high-fat diet-induced obesity, diabetes, and ultraviolet-induced damage. The overall changes in microbiota composition measured by beta diversity analysis showed that tea had shifted the microbiota from the pattern seen in animals that received tea-free intervention. In humans, a prebiotic-like effect was observed toward the gut microbiota, but these results appeared in lower-quality studies. The beta diversity in human microbiota remains intact despite tea intervention; supplementation with different teas affects different types of bacterial taxa in the gut. These studies suggest that tea polyphenols may have a prebiotic effect in disease-induced animals and in a limited number of human interventions. Further intervention is needed to identify the mechanisms of action underlying the effects of tea on gut microbiota.


2021 ◽  
Vol 10 (13) ◽  
pp. 2903
Author(s):  
Jiezhong Chen ◽  
Luis Vitetta

The gut microbiota is well known to exert multiple benefits on human health including protection from disease causing pathobiont microbes. It has been recognized that healthy intestinal microbiota is of great importance in the pathogenesis of COVID-19. Gut dysbiosis caused by various reasons is associated with severe COVID-19. Therefore, the modulation of gut microbiota and supplementation of commensal bacterial metabolites could reduce the severity of COVID-19. Many approaches have been studied to improve gut microbiota in COVID-19 including probiotics, bacterial metabolites, and prebiotics, as well as nutraceuticals and trace elements. So far, 19 clinical trials for testing the efficacy of probiotics and synbiotics in COVID-19 prevention and treatment are ongoing. In this narrative review, we summarize the effects of various approaches on the prevention and treatment of COVID-19 and discuss associated mechanisms.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3081
Author(s):  
Mohammad Amin Atazadegan ◽  
Mohammad Bagherniya ◽  
Gholamreza Askari ◽  
Aida Tasbandi ◽  
Amirhossein Sahebkar

Background: Among non-communicable diseases, cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity in global communities. By 2030, CVD-related deaths are projected to reach a global rise of 25 million. Obesity, smoking, alcohol, hyperlipidemia, hypertension, and hyperhomocysteinemia are several known risk factors for CVDs. Elevated homocysteine is tightly related to CVDs through multiple mechanisms, including inflammation of the vascular endothelium. The strategies for appropriate management of CVDs are constantly evolving; medicinal plants have received remarkable attention in recent researches, since these natural products have promising effects on the prevention and treatment of various chronic diseases. The effects of nutraceuticals and herbal products on CVD/dyslipidemia have been previously studied. However, to our knowledge, the association between herbal bioactive compounds and homocysteine has not been reviewed in details. Thus, the main objective of this study is to review the efficacy of bioactive natural compounds on homocysteine levels according to clinical trials and animal studies. Results: Based on animal studies, black and green tea, cinnamon, resveratrol, curcumin, garlic extract, ginger, and soy significantly reduced the homocysteine levels. According to the clinical trials, curcumin and resveratrol showed favorable effects on serum homocysteine. In conclusion, this review highlighted the beneficial effects of medicinal plants as natural, inexpensive, and accessible agents on homocysteine levels based on animal studies. Nevertheless, the results of the clinical trials were not uniform, suggesting that more well-designed trials are warranted.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hu Zhu ◽  
Catherine Z. Chen ◽  
Srilatha Sakamuru ◽  
Jinghua Zhao ◽  
Deborah K. Ngan ◽  
...  

AbstractThe recent global pandemic of the Coronavirus disease 2019 (COVID-19) caused by the new coronavirus SARS-CoV-2 presents an urgent need for the development of new therapeutic candidates. Many efforts have been devoted to screening existing drug libraries with the hope to repurpose approved drugs as potential treatments for COVID-19. However, the antiviral mechanisms of action of the drugs found active in these phenotypic screens remain largely unknown. In an effort to deconvolute the viral targets in pursuit of more effective anti-COVID-19 drug development, we mined our in-house database of approved drug screens against 994 assays and compared their activity profiles with the drug activity profile in a cytopathic effect (CPE) assay of SARS-CoV-2. We found that the autophagy and AP-1 signaling pathway activity profiles are significantly correlated with the anti-SARS-CoV-2 activity profile. In addition, a class of neurology/psychiatry drugs was found to be significantly enriched with anti-SARS-CoV-2 activity. Taken together, these results provide new insights into SARS-CoV-2 infection and potential targets for COVID-19 therapeutics, which can be further validated by in vivo animal studies and human clinical trials.


2017 ◽  
Vol 242 (18) ◽  
pp. 1772-1785 ◽  
Author(s):  
Stanislav Žiaran ◽  
Martina Galambošová ◽  
L'uboš Danišovič

The purpose of this article was to perform a systematic review of the recent literature on urethral tissue engineering. A total of 31 articles describing the use of tissue engineering for urethra reconstruction were included. The obtained results were discussed in three groups: cells, scaffolds, and clinical results of urethral reconstructions using these components. Stem cells of different origin were used in many experimental studies, but only autologous urothelial cells, fibroblasts, and keratinocytes were applied in clinical trials. Natural and synthetic scaffolds were studied in the context of urethral tissue engineering. The main advantage of synthetic ones is the fact that they can be obtained in unlimited amount and modified by different techniques, but scaffolds of natural origin normally contain chemical groups and bioactive proteins which increase the cell attachment and may promote the cell proliferation and differentiation. The most promising are smart scaffolds delivering different bioactive molecules or those that can be tubularized. In two clinical trials, only onlay-fashioned transplants were used for urethral reconstruction. However, the very promising results were obtained from animal studies where tubularized scaffolds, both non-seeded and cell-seeded, were applied. Impact statement The main goal of this article was to perform a systematic review of the recent literature on urethral tissue engineering. It summarizes the most recent information about cells, seeded or non-seeded scaffolds and clinical application with respect to regeneration of urethra.


Sign in / Sign up

Export Citation Format

Share Document