The role of adipose tissue senescence in obesity- and ageing-related metabolic disorders

2020 ◽  
Vol 134 (2) ◽  
pp. 315-330 ◽  
Author(s):  
Zhuohao Liu ◽  
Kelvin K.L. Wu ◽  
Xue Jiang ◽  
Aimin Xu ◽  
Kenneth K.Y. Cheng

Abstract Adipose tissue as the largest energy reservoir and endocrine organ is essential for maintenance of systemic glucose, lipid and energy homeostasis, but these metabolic functions decline with ageing and obesity. Adipose tissue senescence is one of the common features in obesity and ageing. Although cellular senescence is a defensive mechanism preventing tumorigenesis, its occurrence in adipose tissue causatively induces defective adipogenesis, inflammation, aberrant adipocytokines production and insulin resistance, leading to adipose tissue dysfunction. In addition to these paracrine effects, adipose tissue senescence also triggers systemic inflammation and senescence as well as insulin resistance in the distal metabolic organs, resulting in Type 2 diabetes and other premature physiological declines. Multiple cell types including mature adipocytes, immune cells, endothelial cells and progenitor cells gradually senesce at different levels in different fat depots with ageing and obesity, highlighting the heterogeneity and complexity of adipose tissue senescence. In this review, we discuss the causes and consequences of adipose tissue senescence, and the major cell types responsible for adipose tissue senescence in ageing and obesity. In addition, we summarize the pharmacological approaches and lifestyle intervention targeting adipose tissue senescence for the treatment of obesity- and ageing-related metabolic diseases.

2013 ◽  
Vol 110 (10) ◽  
pp. 661-669 ◽  
Author(s):  
Amal Y. Lemoine ◽  
Séverine Ledoux ◽  
Etienne Larger

summaryAdipose tissue is the most plastic tissue in all multicellular organisms, being constantly remodelled along with weight gain and weight loss. Expansion of adipose tissue must be accompanied by that of its vascularisation, through processes of angiogenesis, whereas weight loss is associated with the regression of blood vessels. Adipose tissue is thus among the tissues that have the highest angiogenic capacities. These changes of the vascular bed occur through close interactions of adipocytes with blood vessels, and involve several angiogenic factors. This review presents studies that are the basis of our understanding of the regulation of adipose tissue angiogenesis. The growth factors that are involved in the processes of angiogenesis and vascular regression are discussed with a focus on their potential modulation for the treatment of obesity. The hypothesis that inflammation of adipose tissue and insulin resistance could be related to altered angiogenesis in adipose tissue is presented, as well as the beneficial or deleterious effect of inhibition of adipose tissue angiogenesis on metabolic diseases.


2019 ◽  
Author(s):  
Chuanhai Zhang ◽  
Xiaoyun He ◽  
Yao Sheng ◽  
Jia Xu ◽  
Cui Yang ◽  
...  

AbstractBackground/objectives:Disorder of energy homeostasis can lead to a variety of metabolic diseases, especially obesity. Brown adipose tissue (BAT) is a promising potential therapeutic target for the treatment of obesity and related metabolic diseases. Allicin, a main bioactive ingredient in garlic, has multiple biology and pharmacological function. However, the role of Allicin, in the regulation of metabolic organ, especially the role of activation of BAT, has not been well studied. Here, we analyzed the role of Allicin in whole-body metabolism and the activation of BAT.Results:Allicin had a significant effect in inhibiting body weight gain, decreasing adiposity, maintaining glucose homeostasis, improving insulin resistance, and ameliorating hepatic steatosis in diet-introduced obesity (DIO) mice. Then we find that Allicin can strongly activate brown adipose tissue (BAT). The activation of brown adipocyte treated with Allicin was also confirmed in mouse primary brown adipocytes.Conclusion:Allicin can ameliorate obesity through activating brown adipose tissue. Our findings provide a promising therapeutic approach for the treatment of obesity and metabolic disorders.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rosa Isela Ortiz-Huidobro ◽  
Myrian Velasco ◽  
Carlos Larqué ◽  
Rene Escalona ◽  
Marcia Hiriart

The increment in energy-dense food and low physical activity has contributed to the current obesity pandemic, which is more prevalent in women than in men. Insulin is an anabolic hormone that regulates the metabolism of lipids, carbohydrates, and proteins in adipose tissue, liver, and skeletal muscle. During obesity, nutrient storage capacity is dysregulated due to a reduced insulin action on its target organs, producing insulin resistance, an early marker of metabolic dysfunction. Insulin resistance in adipose tissue is central in metabolic diseases due to the critical role that this tissue plays in energy homeostasis. We focused on sexual dimorphism on the molecular mechanisms of insulin actions and their relationship with the physiology and pathophysiology of adipose tissue. Until recently, most of the physiological and pharmacological studies were done in males without considering sexual dimorphism, which is relevant. There is ample clinical and epidemiological evidence of its contribution to the establishment and progression of metabolic diseases. Sexual dimorphism is a critical and often overlooked factor that should be considered in design of sex-targeted therapeutic strategies and public health policies to address obesity and diabetes.


2021 ◽  
Author(s):  
Michael Swarbrick ◽  
Hong Zhou ◽  
Markus Seibel

Glucocorticoids regulate a remarkable variety of essential functions, including development, immunomodulation, maintenance of circadian rhythm and the response to stress. Glucocorticoids acutely increase energy availability; this is accomplished not only by mobilizing energy stores, but also by diverting energy away from anabolic processes in tissues such as skeletal muscle and bone. While this metabolic shift is advantageous in the short term, prolonged glucocorticoid exposure frequently results in central obesity, insulin resistance, hyperglycaemia, dyslipidaemia, muscle wasting and osteoporosis. Understanding how glucocorticoids affect nutrient partitioning is therefore critical for preventing the side effects of glucocorticoid treatment. Independently of circulating glucocorticoids, intracellular glucocorticoid activity is regulated by the 11β-hydroxysteroid dehydrogenases 1 and 2 (11β-HSD1 and 2), which activate and inactivate glucocorticoids, respectively. Excessive 11β-HSD1 activity, amplifying local glucocorticoid activity in tissues such as adipose tissue and bone may contribute to visceral obesity, insulin resistance and aging-related bone loss in humans. Several recent findings in animals have considerably expanded our understanding of how glucocorticoids exert their dysmetabolic effects. In mice, disrupting glucocorticoid signalling in either adipose tissue or bone produces marked effects on energy homeostasis. Glucocorticoids have also been shown to influence brown adipose tissue thermogenesis (acute activation, chronic suppression), in both rodents and humans. Lastly, recent studies in mice have demonstrated that many dysmetabolic effects of glucocorticoids are sexually dimorphic, although corresponding results in humans are lacking. Together, these studies have illuminated the mechanisms by which glucocorticoids exert their metabolic effects; and have guided us towards more targeted future treatments for metabolic diseases.


2018 ◽  
Vol 98 (3) ◽  
pp. 1371-1415 ◽  
Author(s):  
Sofiya Gancheva ◽  
Tomas Jelenik ◽  
Elisa Álvarez-Hernández ◽  
Michael Roden

Excessive energy intake and reduced energy expenditure drive the development of insulin resistance and metabolic diseases such as obesity and type 2 diabetes mellitus. Metabolic signals derived from dietary intake or secreted from adipose tissue, gut, and liver contribute to energy homeostasis. Recent metabolomic studies identified novel metabolites and enlarged our knowledge on classic metabolites. This review summarizes the evidence of their roles as mediators of interorgan crosstalk and regulators of insulin sensitivity and energy metabolism. Circulating lipids such as free fatty acids, acetate, and palmitoleate from adipose tissue and short-chain fatty acids from the gut effectively act on liver and skeletal muscle. Intracellular lipids such as diacylglycerols and sphingolipids can serve as lipotoxins by directly inhibiting insulin action in muscle and liver. In contrast, fatty acid esters of hydroxy fatty acids have been recently shown to exert a series of beneficial effects. Also, ketoacids are gaining interest as potent modulators of insulin action and mitochondrial function. Finally, branched-chain amino acids not only predict metabolic diseases, but also inhibit insulin signaling. Here, we focus on the metabolic crosstalk in humans, which regulates insulin sensitivity and energy homeostasis in the main insulin-sensitive tissues, skeletal muscle, liver, and adipose tissue.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haiyan Zhou ◽  
Xinyi Peng ◽  
Jie Hu ◽  
Liwen Wang ◽  
Hairong Luo ◽  
...  

AbstractAdipose tissue-resident T cells have been recognized as a critical regulator of thermogenesis and energy expenditure, yet the underlying mechanisms remain unclear. Here, we show that high-fat diet (HFD) feeding greatly suppresses the expression of disulfide-bond A oxidoreductase-like protein (DsbA-L), a mitochondria-localized chaperone protein, in adipose-resident T cells, which correlates with reduced T cell mitochondrial function. T cell-specific knockout of DsbA-L enhances diet-induced thermogenesis in brown adipose tissue (BAT) and protects mice from HFD-induced obesity, hepatosteatosis, and insulin resistance. Mechanistically, DsbA-L deficiency in T cells reduces IFN-γ production and activates protein kinase A by reducing phosphodiesterase-4D expression, leading to increased BAT thermogenesis. Taken together, our study uncovers a mechanism by which T cells communicate with brown adipocytes to regulate BAT thermogenesis and whole-body energy homeostasis. Our findings highlight a therapeutic potential of targeting T cells for the treatment of over nutrition-induced obesity and its associated metabolic diseases.


2006 ◽  
Vol 50 (2) ◽  
pp. 377-389 ◽  
Author(s):  
Marcio C. Mancini ◽  
Alfredo Halpern

This review offers an overview of physiological agents, current therapeutics, as well as medications, which have been extensively used and those agents not currently available or non-classically considered anti-obesity drugs. As obesity - particularly that of central distribution - represents an important triggering factor for insulin resistance, its pharmacological treatment is relevant in the context of metabolic syndrome control. The authors present an extensive review on the criteria for anti-obesity management efficacy, on physiological mechanisms that regulate central and/or peripheral energy homeostasis (nutrients, monoamines, and peptides), on beta-phenethylamine pharmacological derivative agents (fenfluramine, dexfenfluramine, phentermine and sibutramine), tricyclic derivatives (mazindol), phenylpropanolamine derivatives (ephedrin, phenylpropanolamine), phenylpropanolamine oxytrifluorphenyl derivative (fluoxetine), a naftilamine derivative (sertraline) and a lipstatine derivative (orlistat). An analysis of all clinical trials - over ten-week long - is also presented for medications used in the management of obesity, as well as data about future medications, such as a the inverse cannabinoid agonist, rimonabant.


2020 ◽  
Vol 112 (4) ◽  
pp. 979-990
Author(s):  
Anish Zacharia ◽  
Daniel Saidemberg ◽  
Chanchal Thomas Mannully ◽  
Natalya M Kogan ◽  
Alaa Shehadeh ◽  
...  

ABSTRACT Background Adipose tissue plays important roles in health and disease. Given the unique association of visceral adipose tissue with obesity-related metabolic diseases, the distribution of lipids between the major fat depots located in subcutaneous and visceral regions may shed new light on adipose tissue–specific roles in systemic metabolic perturbations. Objective We sought to characterize the lipid networks and unveil differences in the metabolic infrastructure of the 2 adipose tissues that may have functional and nutritional implications. Methods Paired visceral and subcutaneous adipose tissue samples were obtained from 17 overweight patients undergoing elective abdominal surgery. Ultra-performance LC-MS was used to measure 18,640 adipose-derived features; 520 were putatively identified. A stem cell model for adipogenesis was used to study the functional implications of the differences found. Results Our analyses resulted in detailed lipid metabolic maps of the 2 major adipose tissues. They point to a higher accumulation of phosphatidylcholines, triacylglycerols, and diacylglycerols, although lower ceramide concentrations, in subcutaneous tissue. The degree of unsaturation was lower in visceral adipose tissue (VAT) phospholipids, indicating lower unsaturated fatty acid incorporation into adipose tissue. The differential abundance of phosphatidylcholines we found can be attributed at least partially to higher expression of phosphatidylethanolamine methyl transferase (PEMT). PEMT-deficient embryonic stem cells showed a dramatic decrease in adipogenesis, and the resulting adipocytes exhibited lower accumulation of lipid droplets, in line with the lower concentrations of glycerolipids in VAT. Ceramides may inhibit the expression of PEMT by increased insulin resistance, thus potentially suggesting a functional pathway that integrates ceramide, PEMT, and glycerolipid biosynthetic pathways. Conclusions Our work unveils differential infrastructure of the lipid networks in visceral and subcutaneous adipose tissues and suggests an integrative pathway, with a discriminative flux between adipose tissues.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Céline Lukowicz ◽  
Sandrine Ellero-Simatos ◽  
Marion Régnier ◽  
Fabiana Oliviero ◽  
Frédéric Lasserre ◽  
...  

AbstractMetabolic diseases such as obesity, type II diabetes and hepatic steatosis are a public health concern in developed countries. The metabolic risk is gender‐dependent. The constitutive androstane receptor (CAR), which is at the crossroads between energy metabolism and endocrinology, has recently emerged as a promising therapeutic agent for the treatment of obesity and type 2 diabetes. In this study we sought to determine its role in the dimorphic regulation of energy homeostasis. We tracked male and female WT and CAR deficient (CAR−/−) mice for over a year. During aging, CAR−/− male mice developed hypercortisism, obesity, glucose intolerance, insulin insensitivity, dyslipidemia and hepatic steatosis. Remarkably, the latter modifications were absent, or minor, in female CAR−/− mice. When ovariectomized, CAR−/− female mice developed identical patterns of metabolic disorders as observed in male mice. These results highlight the importance of steroid hormones in the regulation of energy metabolism by CAR. They unveil a sexually dimorphic role of CAR in the maintenance of endocrine and metabolic homeostasis underscoring the importance of considering sex in treatment of metabolic diseases.


2016 ◽  
Vol 291 (33) ◽  
pp. 17066-17076 ◽  
Author(s):  
Carrie M. Elks ◽  
Peng Zhao ◽  
Ryan W. Grant ◽  
Hardy Hang ◽  
Jennifer L. Bailey ◽  
...  

Oncostatin M (OSM) is a multifunctional gp130 cytokine. Although OSM is produced in adipose tissue, it is not produced by adipocytes. OSM expression is significantly induced in adipose tissue from obese mice and humans. The OSM-specific receptor, OSM receptor β (OSMR), is expressed in adipocytes, but its function remains largely unknown. To better understand the effects of OSM in adipose tissue, we knocked down Osmr expression in adipocytes in vitro using siRNA. In vivo, we generated a mouse line lacking Osmr in adiponectin-expressing cells (OSMRFKO mice). The effects of OSM on gene expression were also assessed in vitro and in vivo. OSM exerts proinflammatory effects on cultured adipocytes that are partially rescued by Osmr knockdown. Osm expression is significantly increased in adipose tissue T cells of high fat-fed mice. In addition, adipocyte Osmr expression is increased following high fat feeding. OSMRFKO mice exhibit increased insulin resistance and adipose tissue inflammation and have increased lean mass, femoral length, and bone volume. Also, OSMRFKO mice exhibit increased expression of Osm, the T cell markers Cd4 and Cd8, and the macrophage markers F4/80 and Cd11c. Interestingly, the same proinflammatory genes induced by OSM in adipocytes are induced in the adipose tissue of the OSMRFKO mouse, suggesting that increased expression of proinflammatory genes in adipose tissue arises both from adipocytes and other cell types. These findings suggest that adipocyte OSMR signaling is involved in the regulation of adipose tissue homeostasis and that, in obesity, OSMR ablation may exacerbate insulin resistance by promoting adipose tissue inflammation.


Sign in / Sign up

Export Citation Format

Share Document