scholarly journals Increased susceptibility to dextran sulfate-induced mucositis of iron-overload β-thalassemia mice, another endogenous cause of septicemia in thalassemia

2021 ◽  
Vol 135 (12) ◽  
pp. 1467-1486
Author(s):  
Peerapat Visitchanakun ◽  
Wimonrat Panpetch ◽  
Wilasinee Saisorn ◽  
Piraya Chatthanathon ◽  
Dhammika Leshan Wannigama ◽  
...  

Abstract Enterocyte damage and gut dysbiosis are caused by iron-overload in thalassemia (Thl), possibly making the gut vulnerable to additional injury. Hence, iron-overload in the heterozygous β-globin deficient (Hbbth3/+) mice were tested with 3% dextran sulfate solution (DSS). With 4 months of iron-gavage, iron accumulation, gut-leakage (fluorescein isothiocyanate dextran (FITC-dextran), endotoxemia, and tight junction injury) in Thl mice were more prominent than WT mice. Additionally, DSS-induced mucositis in iron-overloaded mice from Thl group was also more severe than the WT group as indicated by mortality, liver enzyme, colon injury (histology and tissue cytokines), serum cytokines, and gut-leakage (FITC-dextran, endotoxemia, bacteremia, and the detection of Green-Fluorescent Producing Escherichia coli in the internal organs after an oral administration). However, Lactobacillus rhamnosus GG attenuated the disease severity of DSS in iron-overloaded Thl mice as indicated by mortality, cytokines (colon tissue and serum), gut-leakage (FITC-dextran, endotoxemia, and bacteremia) and fecal dysbiosis (microbiome analysis). Likewise, Lactobacillus conditioned media (LCM) decreased inflammation (supernatant IL-8 and cell expression of TLR-4, nuclear factor κB (NFκB), and cyclooxygenase-2 (COX-2)) and increased transepithelial electrical resistance (TEER) in enterocytes (Caco-2 cells) stimulated by lipopolysaccharide (LPS) and LPS plus ferric ion. In conclusion, in the case of iron-overloaded Thl, there was a pre-existing intestinal injury that wask more vulnerable to DSS-induced bacteremia (gut translocation). Hence, the prevention of gut-derived bacteremia and the monitoring on gut-leakage might be beneficial in patients with thalassemia.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Shilan Wang ◽  
Shiyi Zhang ◽  
Shimeng Huang ◽  
Zhenhua Wu ◽  
Jiaman Pang ◽  
...  

Inflammatory bowel disease (IBD), one kind of intestinal chronic inflammatory disease, is characterized by colonic epithelial barrier injury, overproduction of proinflammatory cytokines, and fewer short-chain fatty acids (SCFAs). The present study is aimed at testing the hypothesis that resistant maltodextrin (RM), a soluble dietary fiber produced by starch debranching, alleviated dextran sulfate sodium- (DSS-) induced colitis in mice. Female C57BL/6 mice with or without oral administration of 50 mg/kg RM for 19 days were challenged with 3% DSS in drinking water to induce colitis (from day 14 to day 19). Although RM could not reverse DSS-induced weight loss or colon shortening, it reduced inflammatory cell infiltration and epithelial damage in colon tissue, as well as the transfer of intestinal permeability indicators including serum diamine oxidase (DAO) and D-lactic acid (D-LA). ELISA analysis indicated that RM significantly suppressed the increase of Th1 cytokines induced by DSS in the colon such as tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). The levels of proinflammatory cytokines interleukin-1β (IL-1β), IL-17, and IL-8 in the DSS group were significantly higher than those in the control group and RM group, but no significant difference was observed in the RM-DSS group compared with the RM group. Interestingly, IL-10 levels of the DSS group were significantly higher than those of the other groups. With respect to SCFAs, DSS administration significantly decreased the concentration of faecal butyric acid while the RM-DSS group showed a tendency to increase (P=0.08). In general, RM alleviated dextran sulfate sodium-induced intestinal inflammation through increasing the level of butyric acid and subsequently inhibiting the expression of proinflammatory cytokines.


Blood ◽  
1994 ◽  
Vol 84 (5) ◽  
pp. 1415-1420 ◽  
Author(s):  
G Koopman ◽  
CP Reutelingsperger ◽  
GA Kuijten ◽  
RM Keehnen ◽  
ST Pals ◽  
...  

Abstract Apoptosis, or programmed cell death, is a general mechanism for removal of unwanted cells from the immune system. It is characterized by chromatin condensation, a reduction in cell volume, and endonuclease cleavage of DNA into oligonucleosomal length fragments. Apoptosis is also accompanied by a loss of membrane phospholipid asymmetry, resulting in the exposure of phosphatidylserine at the surface of the cell. Expression of phosphatidylserine at the cell surface plays an important role in the recognition and removal of apoptotic cells by macrophages. Here we describe a new method for the detection of apoptotic cells by flow cytometry, using the binding of fluorescein isothiocyanate-labeled annexin V to phosphatidylserine. When Burkitt lymphoma cell lines and freshly isolated germinal center B cells are cultured under apoptosis inducing conditions, all cells showing chromatin condensation strongly stain with annexin V, whereas normal cells are annexin V negative. Moreover, DNA fragmentation is only found in the annexin V-positive cells. The nonvital dye ethidium bromide was found to stain a subpopulation of the annexin V-positive apoptotic cells, increasing with time. Our results indicate that the phase in apoptosis that is characterized by chromatin condensation coincides with phosphatidylserine exposure. Importantly, it precedes membrane damage that might lead to release from the cells of enzymes that are harmful to the surrounding tissues. Annexin V may prove important in further unravelling the regulation of apoptosis.


2008 ◽  
Vol 20 (1) ◽  
pp. 235
Author(s):  
S. J. Uhm ◽  
M. K. Gupta ◽  
T. Kim ◽  
H. T. Lee

We have demonstrated previously that retroviral-mediated gene transfer is a promising method to produce transgenic avian, porcine, and bovine embryos. This study was designed to evaluate the development potential of transgenic porcine embryos produced by somatic cell nuclear transfer (SCNT) of fetal fibroblast (pFF) cells transfected by a robust replication-defective retroviral vector harboring enhanced green fluorescent protein (EGFP) or β-galactosidase (LacZ) gene. Moloney murine leukemia virus (MoMLV)-based retroviral vectors encapsidated with VSV-G (vesicular stomatitis virus G) glycoprotein and harboring EGFP or LacZ under the control of β-actin promoter were produced and used to transfect primary pFF cells that were subsequently used for SCNT of enucleated porcine oocytes matured in vitro. Our results showed that all surviving cells after transfection and antibiotic selection expressed the genes without any evidence of replication-competent retrovirus. The fusion, cleavage, and blastocyst rates were 85.6 � 6.5, 53.6 � 6.4, and 12.0 � 5.7% for EGFP; 83.5 � 8.2, 57.5 � 6.3 and 10.1 � 4.1% for LacZ; and 80.5 � 4.2, 60.9 � 8.2 and 12.3 � 4.0% for controls, respectively. Mosaicism was not observed in any of the group as evidenced by the expression of LacZ or EGFP in individual blastomeres of all embryos upon staining with β-galactosidase (for LacZ) or when visualized under UV illumination of an epifluorescent microscope using the fluorescein isothiocyanate (FITC) filter set (for EGFP). Further recloning of EGFP-expressing blastomeres, obtained from 4-cell-stage cloned embryos produced by SCNT of pFF cells infected with EGFP harboring vector, into enucleated metaphase II (MII) oocytes resulted in consistent expression of EGFP in recloned blastocysts. Interspecies SCNT (iSCNT) of transfected pFF into enucleated bovine oocytes could also result in consistent gene expression without any adverse effect on blastocyst rate (5.5 v. 4.9%) compared with non-transfected pFF. These data indicate that the replication-defective retroviral vector used in the present study is robust and independent of the genes inserted. Furthermore, introduction of transgenes by this method does not influence the in vitro development rate of cloned embryos. This work was supported by a grant from Biogreen 21 Program, RDA, Republic of Korea.


Shock ◽  
2020 ◽  
Vol 53 (2) ◽  
pp. 189-198 ◽  
Author(s):  
Pratsanee Hiengrach ◽  
Wimonrat Panpetch ◽  
Navaporn Worasilchai ◽  
Ariya Chindamporn ◽  
Somying Tumwasorn ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A307-A308 ◽  
Author(s):  
Kenta Yoshiura ◽  
Tadahito Shimada ◽  
Takahiro Mitsuhashi ◽  
Kumi Takahashi ◽  
Hideyuki Hiraishi ◽  
...  

2008 ◽  
Vol 54 (2) ◽  
pp. 150-158 ◽  
Author(s):  
Yanhua Zeng ◽  
Yimou Wu ◽  
Zhongliang Deng ◽  
Xiaoxing You ◽  
Cuiming Zhu ◽  
...  

Mycoplasma penetrans was shown to be involved in alteration of several eukaryotical cells functions and a causative agent in urogenital infectious diseases. Lipid-associated membrane proteins (LAMPs) may be responsible for the pathogenicity of some mycoplamas. In this study, we investigated whether M. penetrans LAMPs have pathogenic potential by inducing apoptosis in mouse macrophages. As analyzed by annexin-V – fluorescein isothiocyanate staining, significant early- and late-stage apoptosis was induced in M. penetrans LAMPs-challenged mouse macrophages. And agarose gel electrophoresis of the DNA of M. penetrans LAMPs-challenged cells revealed a ladder-like pattern of migration of DNA indicative of apoptosis. The possible molecular mechanisms responsible for the induction of apoptosis were also investigated by characterizing the activation of nuclear transcription factor κB (NFκB). NFκB was activated and translocated into the nucleus in mouse macrophages stimulated by M. penetrans LAMPs. The activation of NFκB and M. penetrans LAMPs-induced apoptosis in mouse macrophages was partially inhibited by the NFκB-specific inhibitor pyrrolidine dithiocarbamate. Thus, this study demonstrates that M. penetrans LAMPs may be an important etiological factor owing to their ability to induce apoptosis in mouse macrophages, which is probably mediated through the activation of NFκB.


Author(s):  
Meysam Hasannejad-Bibalan ◽  
Ali Mojtahedi ◽  
Morteza Eshaghi ◽  
Mahdi Rohani ◽  
Mohammad Reza Pourshafie ◽  
...  

AbstractInflammatory bowel disease (IBD) comprises two major illnesses: Crohn's disease (CD) and ulcerative colitis (UC). Dextran sulfate sodium (DSS) mouse colitis model has been used in understanding the mechanism of IBD. This study was conducted to examine selected Lactobacillus spp. as potential IBD treatment in the DSS-induced animal model. Balb/c mice were used and colitis was induced by adding 5% dextran sodium sulfate into the drinking water for 8 days. Colon length, disease activity index (DAI) and histological analysis were measured as markers of inflammation in DSS colitis mice. The majority of the Lactobacillus species significantly prevented the shortening of the colon length compared with the DSS group. The DAI scores of mice were significantly reduced following usage of four Lactobacillus strains included: Lactobacillus plantarum 03 and 06, Lactobacillus brevis 02 and Lactobacillus rhamnosus 01. The histological analysis exhibited that oral administration of Lactobacillus strains had therapeutic effects on mice colitis. L. plantarum and L. brevis showed better therapeutic effect against DSS-induced acute colitis mice. The probiotic activities of these three isolates indicated that the probiotic effects were strain specific and none of these useful bacteria could exhibit all of the valued probiotic properties simultaneously.


Sign in / Sign up

Export Citation Format

Share Document