scholarly journals Nuclear receptors: from molecular mechanisms to therapeutics

2021 ◽  
Vol 65 (6) ◽  
pp. 847-856
Author(s):  
Daniel E. Frigo ◽  
Maria Bondesson ◽  
Cecilia Williams

Abstract Nuclear receptors are classically defined as ligand-activated transcription factors that regulate key functions in reproduction, development, and physiology. Humans have 48 nuclear receptors, which when dysregulated are often linked to diseases. Because most nuclear receptors can be selectively activated or inactivated by small molecules, they are prominent therapeutic targets. The basic understanding of this family of transcription factors was accelerated in the 1980s upon the cloning of the first hormone receptors. During the next 20 years, a deep understanding of hormone signaling was achieved that has translated to numerous clinical applications, such as the development of standard-of-care endocrine therapies for hormonally driven breast and prostate cancers. A 2004 issue of this journal reviewed progress on elucidating the structures of nuclear receptors and their mechanisms of action. In the current issue, we focus on the broad application of new knowledge in this field for therapy across diverse disease states including cancer, cardiovascular disease, various inflammatory diseases, the aging brain, and COVID-19.

2021 ◽  
Vol 19 ◽  
Author(s):  
Fotis Andromidas ◽  
Saeid Atashpanjeh ◽  
Abigail J. Myers ◽  
Brooke E. MacKinnon ◽  
Melanie M. Shaffer ◽  
...  

: An inverse correlation between the incidence of cancer and neurodegenerative disease has been observed, with the prevalence of cancer peaking around 60 years of age, then slowly tapering off as neurodegenerative diseases increase in the elderly. Although the diseases rarely occur concurrently, the same genes are differentially expressed between the diseases, with four transcription factors found to be in common for their expression. In the brain, mature astrocytes are the origin of astrocytoma, which make up 58.2% of malignant brain tumors in patients 65 or older, while GFAP+ astrocyte-like neural stem cells from the subventricular zone give rise to glioblastoma and anaplastic astrocytoma, which make up 41.6%. Likewise, in neurodegenerative disease, a decrease in astrocyte density is observed in early disease states, and senescent astrocytes increase. Because astrocytes coordinate synaptic function, astrocyte dysfunction likely contributes to or causes initial synapse loss and cognitive decline seen in neurodegenerative disease. In non-disease states, astrocytes retain their ability to successfully re-enter the cell cycle through adult astrogenesis to maintain the neuroenvironment, and controlled astrocytic proliferation could be an important contributor to neurological function. Disruption to this astrogenic balance could account for the inverse correlation of cell cycle dysregulation resulting in malignant astrocytes and tumorigenesis, and astrocytic senescence and cell death without self-renewal in aging resulting in neurodegenerative disease. The current understanding of the astrocytic roles of the transcription factors that could be the cause of this imbalance will be discussed, as well as possible therapeutic approaches to modulate their expression in the astrocyte.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1373 ◽  
Author(s):  
Herring ◽  
Elison ◽  
Tessem

The Nr4a family of nuclear hormone receptors is composed of three members—Nr4a1/Nur77, Nr4a2/Nurr1 and Nr4a3/Nor1. While currently defined as ligandless, these transcription factors have been shown to regulate varied processes across a host of tissues. Of particular interest, the Nr4a family impinge, in a tissue dependent fashion, on cellular proliferation, apoptosis and fuel utilization. The regulation of these processes occurs through both nuclear and non-genomic pathways. The purpose of this review is to provide a balanced perspective of the tissue specific and Nr4a family member specific, effects on cellular proliferation, apoptosis and fuel utilization.


2013 ◽  
Vol 2013 ◽  
pp. 1-21 ◽  
Author(s):  
Monika Puzianowska-Kuznicka ◽  
Eliza Pawlik-Pachucka ◽  
Magdalena Owczarz ◽  
Monika Budzińska ◽  
Jacek Polosak

Small-molecule hormones play crucial roles in the development and in the maintenance of an adult mammalian organism. On the molecular level, they regulate a plethora of biological pathways. Part of their actions depends on their transcription-regulating properties, exerted by highly specific nuclear receptors which are hormone-dependent transcription factors. Nuclear hormone receptors interact with coactivators, corepressors, basal transcription factors, and other transcription factors in order to modulate the activity of target genes in a manner that is dependent on tissue, age and developmental and pathophysiological states. The biological effect of this mechanism becomes apparent not earlier than 30–60 minutes after hormonal stimulus. In addition, small-molecule hormones modify the function of the cell by a number of nongenomic mechanisms, involving interaction with proteins localized in the plasma membrane, in the cytoplasm, as well as with proteins localized in other cellular membranes and in nonnuclear cellular compartments. The identity of such proteins is still under investigation; however, it seems that extranuclear fractions of nuclear hormone receptors commonly serve this function. A direct interaction of small-molecule hormones with membrane phospholipids and with mRNA is also postulated. In these mechanisms, the reaction to hormonal stimulus appears within seconds or minutes.


2003 ◽  
Vol 23 (17) ◽  
pp. 6210-6220 ◽  
Author(s):  
Pei-Wen Hsiao ◽  
Christy J. Fryer ◽  
Kevin W. Trotter ◽  
Weidong Wang ◽  
Trevor K. Archer

ABSTRACT Nuclear hormone receptors are ligand-dependent transcriptional regulators that modulate chromatin structure. However, the precise molecular mechanisms by which receptors recruit chromatin-remodeling activity are not fully elucidated. We show that in the absence of its ligand-binding domain, the glucocorticoid receptor (GR) is able to interact with both nuclear receptor coactivators and the BRG1 chromatin-remodeling complex in vivo. Individually, the GR makes direct interactions with BRG1-associated factor 60a (BAF60a) and BAF57, but not with BRG1, BAF155, or BAF170. Further, BAF60a possesses at least two interaction surfaces, one for GR and BRG1 and a second for BAF155 and BAF170. A GR mutant, GR(R488Q), that fails to interact with BAF60a in vitro has reduced chromatin-remodeling activity and reduced transcriptional activity from the promoter assembled as chromatin in vivo. Stable expression of a BAF60a truncation mutant, BAF60a4-140, caused chromatin-specific loss of GR functions in vivo. In the presence of the BAF60a mutant, the GR fails to interact with the BRG1 complex and consequently is also deficient in its ability to activate transcription from chromatin. Thus, in addition to previously identified BAF250, BAF60a may provide another critical and direct link between nuclear receptors and the BRG1 complex that is required for promoter recruitment and subsequent chromatin remodeling.


2003 ◽  
Vol 17 (10) ◽  
pp. 1901-1909 ◽  
Author(s):  
Anette Wärnmark ◽  
Eckardt Treuter ◽  
Anthony P. H. Wright ◽  
Jan-Åke Gustafsson

Abstract Nuclear receptors (NRs) comprise a family of ligand inducible transcription factors. To achieve transcriptional activation of target genes, DNA-bound NRs directly recruit general transcription factors (GTFs) to the preinitiation complex or bind intermediary factors, so-called coactivators. These coactivators often constitute subunits of larger multiprotein complexes that act at several functional levels, such as chromatin remodeling, enzymatic modification of histone tails, or modulation of the preinitiation complex via interactions with RNA polymerase II and GTFs. The binding of NR to coactivators is often mediated through one of its activation domains. Many NRs have at least two activation domains, the ligand-independent activation function (AF)-1, which resides in the N-terminal domain, and the ligand-dependent AF-2, which is localized in the C-terminal domain. In this review, we summarize and discuss current knowledge regarding the molecular mechanisms of AF-1- and AF-2-mediated gene activation, focusing on AF-1 and AF-2 conformation and coactivator binding.


2019 ◽  
Vol 26 (7) ◽  
pp. 1079-1112 ◽  
Author(s):  
Juan Pablo Rigalli ◽  
Guillermo Nicolás Tocchetti ◽  
Johanna Weiss

ABC transporters are membrane proteins mediating the efflux of endo- and xenobiotics. Transporter expression is not static but instead is subject to a dynamic modulation aiming at responding to changes in the internal environment and thus at maintaining homeostatic conditions. Nuclear receptors are ligand modulated transcription factors that get activated upon changes in the intracellular concentrations of the respective agonists and bind to response elements within the promoter of ABC transporters, thus modulating their expression and, consequently, their activity. This review compiles information about transporter regulation by nuclear receptors classified according to the perpetrator compounds and the biological effects resulting from the regulation. Modulation by hormone receptors is involved in maintaining endocrine homeostasis and may also lead to an altered efflux of other substrates in cases of altered hormonal levels. Xenobiotic receptors play a key role in limiting the accumulation of potentially harmful compounds. In addition, their frequent activation by therapeutic agents makes them common molecular elements mediating drug-drug interactions and cancer multidrug resistance. Finally, lipid and retinoid receptors are usually activated by endogenous molecules, thus sensing metabolic changes and inducing ABC transporters to counteract potential alterations. Furthermore, the axis nuclear receptor-ABC transporter constitutes a promising therapeutic target for the treatment of several disease states like cancer, atherosclerosis and dyslipidemia. In the current work, we summarize the information available on the pharmacological potential of nuclear receptor modulators and discuss their applicability in the clinical practice.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 900
Author(s):  
Dongyun Zhang ◽  
Anthony P. Heaney

The hypothalamic–pituitary–adrenal (HPA) axis plays a critical role in adaptive stress responses and maintaining organism homeostasis. The pituitary corticotroph is the central player in the HPA axis and is regulated by a plethora of hormonal and stress related factors that synergistically interact to activate and temper pro-opiomelanocortin (POMC) transcription, to either increase or decrease adrenocorticotropic hormone (ACTH) production and secretion as needed. Nuclear receptors are a family of highly conserved transcription factors that can also be induced by various physiologic signals, and they mediate their responses via multiple targets to regulate metabolism and homeostasis. In this review, we summarize the modulatory roles of nuclear receptors on pituitary corticotroph cell POMC transcription, describe the unique and complex role these factors play in hypothalamic–pituitary–adrenal axis (HPA) regulation and discuss potential therapeutic targets in disease states.


Author(s):  
Li Mo ◽  
Jinhan He

AbstractNuclear receptors (NRs) belong to a superfamily of evolutionarily related DNA-binding transcription factors that can be activated by steroid and thyroid hormones, and other lipid metabolites. Ligand activated NRs can regulate target gene expression by binding to DNA response elements present in the target gene promoters. Through this regulation, NRs are broadly implicated in physiology and metabolism. In this chapter, we will focus on the xenobiotic receptors and their recently discovered functions in metabolic diseases.


2003 ◽  
Vol 17 (9) ◽  
pp. 1681-1692 ◽  
Author(s):  
Jianming Xu ◽  
Qingtian Li

Abstract The p160 steroid receptor coactivator (SRC) gene family contains three homologous members, which serve as transcriptional coactivators for nuclear receptors and certain other transcription factors. These coactivators interact with ligand-bound nuclear receptors to recruit histone acetyltransferases and methyltransferases to specific enhancer/promotor regions, which facilitates chromatin remodeling, assembly of general transcription factors, and transcription of target genes. This minireview summarizes our current knowledge about the molecular structures, molecular mechanisms, temporal and spatial expression patterns, and biological functions of the SRC family. In particular, this article highlights the roles of SRC-1 (NCoA-1), SRC-2 (GRIP1, TIF2, or NCoA-2) and SRC-3 (p/CIP, RAC3, ACTR, AIB1, or TRAM-1) in development, organ function, endocrine regulation, and nuclear receptor function, which are defined by characterization of the genetically manipulated animal models. Furthermore, this article also reviews our current understanding of the role of SRC-3 in breast cancer and discusses possible mechanisms for functional specificity and redundancy among SRC family members.


1998 ◽  
Vol 94 (6) ◽  
pp. 557-572 ◽  
Author(s):  
Peter J. Barnes

1. Glucocorticoids are widely used for the suppression of inflammation in chronic inflammatory diseases such as asthma, rheumatoid arthritis, inflammatory bowel disease and autoimmune diseases, all of which are associated with increased expression of inflammatory genes. The molecular mechanisms involved in this antiinflammatory action of glucocorticoids is discussed, particularly in asthma, which accounts for the highest clinical use of these agents. 2. Glucocorticoids bind to glucocorticoid receptors in the cytoplasm which then dimerize and translocate to the nucleus, where they bind to glucocorticoid response elements (GRE) on glucocorticoid-responsive genes, resulting in increased transcription. Glucocorticoids may increase the transcription of genes coding for antiinflammatory proteins, including lipocortin-1, interleukin-10, interleukin-1 receptor antagonist and neutral endopeptidase, but this is unlikely to account for all of the widespread anti-inflammatory actions of glucocorticoids. 3. The most striking effect of glucocorticoids is to inhibit the expression of multiple inflammatory genes (cytokines, enzymes, receptors and adhesion molecules). This cannot be due to a direct interaction between glucocorticoid receptors and GRE, as these binding sites are absent from the promoter regions of most inflammatory genes. It is more likely to be due to a direct inhibitory interaction between activated glucocorticoid receptors and activated transcription factors, such as nuclear factor-κB and activator protein-1, which regulate the inflammatory gene expression. 4. It is increasingly recognized that glucocorticoids change the chromatin structure. Glucocorticoid receptors also interact with CREB-binding protein (CBP), which acts as a co-activator of transcription, binding several other transcription factors that compete for binding sites on this molecule. Increased transcription is associated with uncoiling of DNA wound around histone and this is secondary to acetylation of the histone residues by the enzymic action of CBP. Glucocorticoids may lead to deacetylation of histone, resulting in tighter coiling of DNA and reduced access of transcription factors to their binding sites, thereby suppressing gene expression. 5. Rarely patients with chronic inflammatory diseases fail to respond to glucocorticoids, although endocrine function of steroids is preserved. This may be due to excessive formation of activator protein-1 at the inflammatory site, which consumes activated glucocorticoid receptors so that they are not available for suppressing inflammatory genes. 6. This new understanding of glucocorticoid mechanisms may lead to the development of novel steroids with less risk of side effects (which are due to the endocrine and metabolic actions of steroids). ‘Dissociated’ steroids which are more active in transrepression (interaction with transcription factors) than transactivation (GRE binding) have now been developed. Some of the transcription factors that are inhibited by glucocorticoid, such as nuclear factor-κB, are also targets for novel anti-inflammatory therapies.


Sign in / Sign up

Export Citation Format

Share Document