scholarly journals Review of the in Vivo Functions of the p160 Steroid Receptor Coactivator Family

2003 ◽  
Vol 17 (9) ◽  
pp. 1681-1692 ◽  
Author(s):  
Jianming Xu ◽  
Qingtian Li

Abstract The p160 steroid receptor coactivator (SRC) gene family contains three homologous members, which serve as transcriptional coactivators for nuclear receptors and certain other transcription factors. These coactivators interact with ligand-bound nuclear receptors to recruit histone acetyltransferases and methyltransferases to specific enhancer/promotor regions, which facilitates chromatin remodeling, assembly of general transcription factors, and transcription of target genes. This minireview summarizes our current knowledge about the molecular structures, molecular mechanisms, temporal and spatial expression patterns, and biological functions of the SRC family. In particular, this article highlights the roles of SRC-1 (NCoA-1), SRC-2 (GRIP1, TIF2, or NCoA-2) and SRC-3 (p/CIP, RAC3, ACTR, AIB1, or TRAM-1) in development, organ function, endocrine regulation, and nuclear receptor function, which are defined by characterization of the genetically manipulated animal models. Furthermore, this article also reviews our current understanding of the role of SRC-3 in breast cancer and discusses possible mechanisms for functional specificity and redundancy among SRC family members.

2003 ◽  
Vol 17 (10) ◽  
pp. 1901-1909 ◽  
Author(s):  
Anette Wärnmark ◽  
Eckardt Treuter ◽  
Anthony P. H. Wright ◽  
Jan-Åke Gustafsson

Abstract Nuclear receptors (NRs) comprise a family of ligand inducible transcription factors. To achieve transcriptional activation of target genes, DNA-bound NRs directly recruit general transcription factors (GTFs) to the preinitiation complex or bind intermediary factors, so-called coactivators. These coactivators often constitute subunits of larger multiprotein complexes that act at several functional levels, such as chromatin remodeling, enzymatic modification of histone tails, or modulation of the preinitiation complex via interactions with RNA polymerase II and GTFs. The binding of NR to coactivators is often mediated through one of its activation domains. Many NRs have at least two activation domains, the ligand-independent activation function (AF)-1, which resides in the N-terminal domain, and the ligand-dependent AF-2, which is localized in the C-terminal domain. In this review, we summarize and discuss current knowledge regarding the molecular mechanisms of AF-1- and AF-2-mediated gene activation, focusing on AF-1 and AF-2 conformation and coactivator binding.


2021 ◽  
Vol 22 (9) ◽  
pp. 4760
Author(s):  
Licen Li ◽  
Chu-Xia Deng ◽  
Qiang Chen

Steroid receptor coactivator-3 (SRC-3), also known as amplified in breast cancer 1 (AIB1), is a member of the SRC family. SRC-3 regulates not only the transcriptional activity of nuclear receptors but also many other transcription factors. Besides the essential role of SRC-3 in physiological functions, it also acts as an oncogene to promote multiple aspects of cancer. This review updates the important progress of SRC-3 in carcinogenesis and summarizes its mode of action, which provides clues for cancer therapy.


2014 ◽  
Vol 395 (11) ◽  
pp. 1265-1274 ◽  
Author(s):  
Boet van Riel ◽  
Frank Rosenbauer

Abstract Purine-rich box1 (PU.1) is a transcription factor that not only has a key role in the development of most hematopoietic cell lineages but also in the suppression of leukemia. To exert these functions, PU.1 can cross-talk with multiple different proteins by forming complexes in order to activate or repress transcription. Among its protein partners are chromatin remodelers, DNA methyltransferases, and a number of other transcription factors with important roles in hematopoiesis. While a great deal of knowledge has been acquired about PU.1 function over the years, it was the development of novel genome-wide technologies, which boosted our understanding of how PU.1 acts on the chromatin to drive its repertoire of target genes. This review summarizes current knowledge and ideas of molecular mechanisms by which PU.1 controls hematopoiesis and suppresses leukemia.


Endocrinology ◽  
2003 ◽  
Vol 144 (9) ◽  
pp. 4144-4153 ◽  
Author(s):  
Yuji Kamiya ◽  
Xiao-Yong Zhang ◽  
Hao Ying ◽  
Yusuhito Kato ◽  
Mark C. Willingham ◽  
...  

Abstract Mutations in the thyroid hormone receptor-β gene (TRβ) cause resistance to thyroid hormone. How the action of mutant thyroid hormone nuclear receptors (TRs) is regulated in vivo is not clear. We examined the effect of a TR coactivator, steroid receptor coactivator-1 (SRC-1), on target-tissue responsiveness by using a mouse model of resistance to thyroid hormone, TRβPV knockin mice, in the SRC-1 null background. Lack of SRC-1 intensified the dysfunction of the pituitary-thyroid axis and impaired growth in TRβPV/+ mice but not in TRβPV/PV mice. In TRβPV/PV mice, however, lack of SRC-1 intensified the pathological progression of thyroid follicular cells to papillary hyperplasia, reminiscent of papillary neoplasia. In contrast, lack of SRC-1 did not affect responsiveness in the liver in regulating serum cholesterol in either TRβPV/+ or TRβPV/PV mice. Lack of SRC-1 led to changes in the abnormal expression patterns of several T3 target genes in the pituitary and liver. Thus, the present studies show that a coactivator such as SRC-1 could modulate the in vivo action of TRβ mutants in a tissue-dependent manner.


Biomedicines ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 76 ◽  
Author(s):  
Suresh P. Khadke ◽  
Aniket A. Kuvalekar ◽  
Abhay M. Harsulkar ◽  
Nitin Mantri

Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by impaired insulin action and its secretion. The objectives of the present study were to establish an economical and efficient animal model, mimicking pathophysiology of human T2DM to understand probable molecular mechanisms in context with lipid metabolism. In the present study, male Wistar rats were randomly divided into three groups. Animals were fed with high fat diet (HFD) except healthy control (HC) for 12 weeks. After eight weeks, intra peritoneal glucose tolerance test was performed. After confirmation of glucose intolerance, diabetic control (DC) group was injected with streptozotocin (STZ) (35 mg/kg b.w., i.p.). HFD fed rats showed increase (p ≤ 0.001) in glucose tolerance and HOMA-IR as compared to HC. Diabetes rats showed abnormal (p ≤ 0.001) lipid profile as compared to HC. The hepatocyte expression of transcription factors SREBP-1c and NFκβ, and their target genes were found to be upregulated, while PPAR-γ, CPT1A and FABP expressions were downregulated as compared to the HC. A number of animal models have been raised for studying T2DM, but the study has been restricted to only the biochemical level. The model is validated at biochemical, molecular and histopathological levels, which can be used for screening new therapeutics for the effective management of T2DM.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jiazi Zhang ◽  
Hongchun Xiong ◽  
Huijun Guo ◽  
Yuting Li ◽  
Xiaomei Xie ◽  
...  

The wheat AP2 family gene Q controls domestication traits, including spike morphology and threshability, which are critical for the widespread cultivation and yield improvement of wheat. Although many studies have investigated the molecular mechanisms of the Q gene, its direct target genes, especially those controlling spike morphology, are not clear, and its regulatory pathways are not well established. In this study, we conducted gene mapping of a wheat speltoid spike mutant and found that a new allele of the Q gene with protein truncation played a role in spike morphology variation in the mutant. Dynamic expression levels of the Q gene throughout the spike development process suggested that the transcript abundances of the mutant were decreased at the W6 and W7 scales compared to those of the WT. We identified several mutation sites on the Q gene and showed that mutations in different domains resulted in distinct phenotypes. In addition, we found that the Q gene produced three transcripts via alternative splicing and that they exhibited differential expression patterns in nodes, internodes, flag leaves, and spikes. Finally, we identified several target genes directly downstream of Q, including TaGRF1-2D and TaMGD-6B, and proposed a possible regulatory network. This study uncovered the target genes of Q, and the results can help to clarify the mechanism of wheat spike morphology and thereby improve wheat grain yield.


Author(s):  
Perotti M F ◽  
Arce A L ◽  
R L Chan

Abstract Roots are the anchorage organs of plants, responsible for water and nutrient uptake, exhibiting high plasticity. Root architecture is driven by the interactions of biomolecules, including transcription factors (TFs) and hormones that are crucial players regulating root plasticity. Multiple TF families are involved in root development; some, such as ARFs and LBDs, have been well characterized, whereas others remain less investigated. In this review, we synthesize the current knowledge about the involvement of the large family of homeodomain-leucine zipper (HD-Zip) TFs in root development. This family is divided into four subfamilies (I to IV), mainly according to structural features, such as additional motifs aside from HD-Zip, as well as their size, gene structure, and expression patterns. We explored and analyzed public databases and the scientific literature regarding HD-Zip TFs in Arabidopsis and other species. Most members of the four HD-Zip subfamilies are expressed in specific cell types and several ones from each group have assigned functions in root development. Notably, a high proportion of the studied proteins are part of intricate regulation pathways involved in primary and lateral root growth and development.


Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Yao Zhang ◽  
Qiao-Lu Zang ◽  
Li-Wang Qi ◽  
Su-Ying Han ◽  
Wan-Feng Li

Grafting, cutting, and pruning are important horticultural techniques widely used in the establishment of clonal forestry. After the application of these techniques, some properties of the plants change, however, the underlying molecular mechanisms are still unclear. In our previous study, 27 age-related transcripts were found to be expressed differentially between the juvenile vegetative (1- and 2-year-old) and adult reproductive (25- and 50-year-old) phases of Larix kaempferi. Here, we re-analyzed the 27 age-related transcripts, cloned their full-length cDNA sequences, and measured their responses to grafting, cutting, and pruning. After sequence analysis and cloning, 20 transcription factors were obtained and annotated, most of which were associated with reproductive development, and six (LaAGL2-1, LaAGL2-2, LaAGL2-3, LaSOC1-1, LaAGL11, and LaAP2-2) showed regular expression patterns with L. kaempferi aging. Based on the expression patterns of these transcription factors in L. kaempferi trees subjected to grafting, cutting, and pruning, we concluded that (1) cutting and pruning rejuvenate the plants and change their expression, and the effects of cutting on gene expression are detectable within 14 years, although the cutting seedlings are still maturing during these years; (2) within three months after grafting, the rootstock is more sensitive to grafting than the scion and readily becomes mature with the effect of the scion, while the scion is not readily rejuvenated by the effect of the rootstock; and (3) LaAGL2-2 and LaAGL2-3 are more sensitive to grafting, while LaAP2-2 is impervious to it. These findings not only provide potential molecular markers to assess the state of plants but also aid in studies of the molecular mechanisms of rejuvenation.


2003 ◽  
Vol 31 (1) ◽  
pp. 292-297 ◽  
Author(s):  
K.U. Birkenkamp ◽  
P.J. Coffer

Recently, the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors has been identified as direct targets of phosphoinositide 3-kinase-mediated signal transduction. The AFX (acute-lymphocytic-leukaemia-1 fused gene from chromosome X), FKHR (Forkhead in rhabdomyosarcoma) and FKHR-L1 (FKHR-like 1) transcription factors are directly phosphorylated by protein kinase B, resulting in nuclear export and inhibition of transcription. This signalling pathway was first identified in the nematode worm Caenorhabditis elegans, where it has a role in regulation of the life span of the organism. Studies have shown that this evolutionarily conserved signalling module has a role in regulation of both cell-cycle progression and cell survival in higher eukaryotes. These effects are co-ordinated by FOXO-mediated induction of a variety of specific target genes that are only now beginning to be identified. Interestingly, FOXO transcription factors appear to be able to regulate transcription through both DNA-binding-dependent and -independent mechanisms. Our understanding of the regulation of FOXO activity, and defining specific transcriptional targets, may provide clues to the molecular mechanisms controlling cell fate decisions to divide, differentiate or die.


2017 ◽  
Vol 96 (11) ◽  
pp. 1200-1209 ◽  
Author(s):  
M.R. Carpinelli ◽  
M.E. de Vries ◽  
S.M. Jane ◽  
S. Dworkin

Craniofacial development in vertebrates involves the coordinated growth, migration, and fusion of several facial prominences during embryogenesis, processes governed by strict genetic and molecular controls. A failure in any of the precise spatiotemporal sequences of events leading to prominence fusion often leads to anomalous facial, skull, and jaw formation—conditions termed craniofacial defects (CFDs). Affecting approximately 0.1% to 0.3% of live births, CFDs are a highly heterogeneous class of developmental anomalies, which are often underpinned by genetic mutations. Therefore, identifying novel disease-causing mutations in genes that regulate craniofacial development is a critical prerequisite to develop new preventive or therapeutic measures. The Grainyhead-like ( GRHL) transcription factors are one such gene family, performing evolutionarily conserved roles in craniofacial patterning. The antecedent member of this family, Drosophila grainyhead ( grh), is required for head skeleton development in fruit flies, loss or mutation of Grhl family members in mouse and zebrafish models leads to defects of both maxilla and mandible, and recently, mutations in human GRHL3 have been shown to cause or contribute to both syndromic (Van Der Woude syndrome) and nonsyndromic palatal clefts. In this review, we summarize the current knowledge regarding the craniofacial-specific function of the Grainyhead-like family in multiple model species, identify some of the major target genes regulated by the Grhl transcription factors in craniofacial patterning, and, by examining animal models, draw inferences as to how these data will inform the likely roles of GRHL factors in human CFDs comprising palatal clefting. By understanding the molecular networks regulated by Grhl2 and Grhl3 target genes in other systems, we can propose likely pathways that mediate the effects of these transcription factors in human palatogenesis.


Sign in / Sign up

Export Citation Format

Share Document