scholarly journals Experimental Studies on the Formation of Air-core inside the Drop Shaft

2018 ◽  
Vol 40 ◽  
pp. 05035
Author(s):  
Dong Sop Rhee ◽  
Hoje Seong ◽  
Inhwan Park ◽  
Hyung-jun Kim

In this study, the drainage efficiency of the multi-stage intake structure, which transports flood to the underground storage, was investigated from the laboratory experiments. The multi-stage intake structure was designed based on the tangential intake and the steps on the bed were purposes to decrease the energy of approaching flow. The experimental results show that the maximum water depth was effectively decreased in the entrance of the drop shaft. The measurements results of the air core width in the drop shaft show that the flow was stably drained without the choking. Furthermore, the air core width tends to increase with the Froude number, and these results indicate that the multi-stage intake structure is applicable to convey the approaching flow with relatively high velocity.

2018 ◽  
Vol 78 (6) ◽  
pp. 1287-1295 ◽  
Author(s):  
Dong Sop Rhee ◽  
Yong Sung Park ◽  
Inhwan Park

Abstract Laboratory experiments were conducted to assess the performance of a vortex drop inlet with a spiral intake in subcritical and supercritical flow conditions. The water surface elevation at multiple locations was measured for different flowrates by varying the extent of the guiding wall and the longitudinal and radial bottom slopes. The measurements show that a steeper longitudinal bottom slope decreases the water surface elevation at the beginning of the intake, resulting in a transcritical flow in the intake structure. However, a steeper longitudinal bottom slope also causes the maximum water surface elevation to occur within the spiral intake. For an effective vortex drop inlet design, achieving a low water surface elevation throughout the entire spiral intake structure is required. Experimental results show that the two seemingly conflicting design criteria, namely, achieving a low water surface elevation in the approach channel and reducing the maximum water surface elevation in the intake structure, can be simultaneously achieved by adding a radial bottom slope.


2018 ◽  
Vol 69 (7) ◽  
pp. 1695-1698
Author(s):  
Marin Rusanescu ◽  
Carmen Otilia Rusanescu ◽  
Gheorghe Voicu ◽  
Mihaela Begea

A calcium bentonite from Orasu Nou deposit (Satu Mare Romania) was used as raw material. We have conducted laboratory experiments to determine the influence of bentonite on the degree of heavy metal retention. It has been observed that the rate of retention increases as the heavy metal concentration decreases. Experimental studies have been carried out on metal retention ( Zn) in bentonite. In this paper, we realized laboratory experiments for determining the influence of metal (Zn) on the growth and development of two types of plants (Pelargonium domesticum and Kalanchoe) and the effect of bentonite on the absorption of pollutants. These flowers were planted in unpolluted soil, in heavy metal polluted soil and in heavy metal polluted soil to which bentonite was added to observe the positive effect of bentonite. It has been noticed that the flowers planted in unpolluted soil and polluted with heavy metals to which bentonite has been added, the flowers have flourished, the leaves are still green and the plants whose soils have been polluted with heavy metals began to dry after 6 days, three weeks have yellowish leaves and flowers have dried. Experiments have demonstrated the essential role of bentonite for the removal of heavy metals polluted soil.


1979 ◽  
Vol 91 (3) ◽  
pp. 497-512 ◽  
Author(s):  
Jørgen Fredsøe

Changes in dune properties due to a sudden change in the water discharge are analysed. The transport of sediment is assumed to occur mainly as bed load and the square of the Froude number must be much smaller than unity. The theory is based on similarity in the bed-shear distribution close to the dune top just before and just after the change in the water discharge. The model is found to agree with laboratory experiments. Further, by use of this model, flow in a river where the water discharge oscillates weakly around a constant mean value has been treated. Hereby the variation in the phase differences between sediment transport, water depth and water discharge with the period of the oscillation is calculated. The results agree qualitatively with observations.


Author(s):  
Manases Tello Ruiz ◽  
Marc Mansuy ◽  
Luca Donatini ◽  
Jose Villagomez ◽  
Guillaume Delefortrie ◽  
...  

Abstract The influence of waves on ship behaviour can lead to hazardous scenarios which put at risk the ship, the crew and the surroundings. For this reason, investigating the effect of waves on manoeuvring is of relevant interest. Waves may impair the overall manoeuvring performance of ships hence increasing risks such as collisions, which are of critical importance when considering dense traffic around harbour entrances and in unsheltered access channels. These are conditions met by Ultra Large Container Ships (ULCS) when approaching a port, e.g. in the North Sea access channels to the main sea ports of Belgium. Note that due to the large draft of ULCS and the limited water depth, shallow water effects will also influenced the ship. Thus, in such scenarios the combined effects of shallow water and waves on the ship’s manoeuvring need to be studied. The present work investigates the effect of waves on the turning ability of an ULCS in shallow water. Simulations are carried out using the two time scale approach. The restricted water depth corresponds to 50% Under Keel Clearance (UKC). To gain a better insight on the forces acting on the ship, the propulsion, and the rudder behaviour in waves experimental studies were conducted. These tests were carried out in the Towing Tank for Manoeuvres in Confined Water at Flanders Hydraulics Research (in co-operation with Ghent University) with a scale model of an ULCS. Different wave lengths, wave amplitudes, ships speeds, propeller rates, and rudder angles were tested. The turning ability characteristics obtained from simulations in waves and calm water are presented, and discussed.


Water ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 30 ◽  
Author(s):  
Yongfei Qi ◽  
Yurong Wang ◽  
Jianmin Zhang

The dropshaft structure is usually applied in an urban drainage system to connect the shallow pipe network and the deep tunnel. By using the renormalization group (RNG) k~ε turbulence model with a volume of fluid method, the flow pattern and the maximum relative water depth over a stepped dropshaft with a different central angle of step were numerically investigated. The calculated results suggested that the flow in the stepped dropshaft was highly turbulent and characterized by deflection during the jet caused by the curvature of the sidewall. According to the pressure distribution on the horizontal step and the flow pattern above the step, the flow field was partitioned into the recirculating region, the wall-impinging region and the mixing region. In addition, with the increase in the central angle of step, the scope of the wall-impinging region and the mixing region increased and the scope of the recirculating region remained nearly unchanged. The maximum water depth increased with the increase in discharge. In the present work we have shown that, as the value of the central angle of step increased, the maximum water depth decreased initially and increased subsequently.


2019 ◽  
Vol 30 (7) ◽  
pp. 998-1009 ◽  
Author(s):  
XF Zhang ◽  
HS Tzou

Based on the electromechanical coupling of piezoelectricity, a piezoelectric ring energy harvester is designed and tested in this study, such that the harvester can be used to power electric devices in the closed-circuit condition. Output energies across the external resistive load are evaluated when the ring energy harvester is subjected to harmonic excitations, and various design parameters are discussed to maximize the power output. In order to validate the theoretical energy harvesting results, laboratory experiments are conducted. Comparing experiment results with theoretical ones, the errors between them are under 10% for the output voltage. Laboratory experiments demonstrate that the ring energy harvester is workable in practical applications.


2020 ◽  
Author(s):  
Jihane Elyahyioui ◽  
Valentijn Pauwels ◽  
Edoardo Daly ◽  
Francois Petitjean ◽  
Mahesh Prakash

<p>Flooding is one of the most common and costly natural hazards at global scale. Flood models are important in supporting flood management. This is a computationally expensive process, due to the high nonlinearity of the equations involved and the complexity of the surface topography. New modelling approaches based on deep learning algorithms have recently emerged for multiple applications.</p><p>This study aims to investigate the capacity of machine learning to achieve spatio-temporal flood modelling. The combination of spatial and temporal input data to obtain dynamic results of water levels and flows from a machine learning model on multiple domains for applications in flood risk assessments has not been achieved yet. Here, we develop increasingly complex architectures aimed at interpreting the raw input data of precipitation and terrain to generate essential spatio-temporal variables (water level and velocity fields) and derived products (flood maps) by training these based on hydrodynamic simulations.</p><p>An extensive training dataset is generated by solving the 2D shallow water equations on simplified topographies using Lisflood-FP.</p><p>As a first task, the machine learning model is trained to reproduce the maximum water depth, using as inputs the precipitation time series and the topographic grid. The models combine the spatial and temporal information through a combination of 1D and 2D convolutional layers, pooling, merging and upscaling. Multiple variations of this generic architecture are trained to determine the best one(s). Overall, the trained models return good results regarding performance indices (mean squared error, mean absolute error and classification accuracy) but fail at predicting the maximum water depths with sufficient precision for practical applications.</p><p>A major limitation of this approach is the availability of training examples. As a second task, models will be trained to bring the state of the system (spatially distributed water depth and velocity) from one time step to the next, based on the same inputs as previously, generating the full solution equivalent to that of a hydrodynamic solver. The training database becomes much larger as each pair of consecutive time steps constitutes one training example.</p><p>Assuming that a reliable model can be built and trained, such methodology could be applied to build models that are faster and less computationally demanding than hydrodynamic models. Indeed, in with the synthetic cases shown here, the simulation times of the machine learning models (< seconds) are far shorter than those of the hydrodynamic model (a few minutes at least). These data-driven models could be used for interpolation and forecasting. The potential for extrapolation beyond the range of training datasets will also be investigated (different topography and high intensity precipitation events). </p>


2010 ◽  
Vol 62 (10) ◽  
pp. 2442-2449
Author(s):  
A. J. Li ◽  
T. Zhang ◽  
X. Y. Li

Mathematical simulation and laboratory experiments were conducted to investigate the controlling factor for aerobic sludge granulation. A model was used to describe the biomass dynamics during the granulation process. The simulation results indicate that the selective discharge of small and loose sludge flocs is the key controlling factor for granulation. In the experimental studies, tests were conducted with four batch column reactors (BCR) that were seeded with both activated sludge flocs and mature granules. Three different sludge discharge methods were tested, including unselective discharge of mixed sludge, selective discharge of small and slow-settling flocs, and selective discharge of settled dense sludge. The results show that mixed sludge discharge and discharge of dense sludge resulted in disappearance of granules from the reactors. Only selective discharge of small and slow-settling sludge flocs led to complete granulation. Small and loose sludge flocs were found to have a clear advantage over large and dense granules in substrate uptake. It can be concluded that selective discharge of loose flocs removes these competitors in suspended-growth mode from the reactors and makes the substrate more available for uptake and utilization by the biomass in attached-growth form, leading to granulation.


Although there are a great many experimental studies of particular pollutants and their effects, and some critical examination has been made of the mechanisms involved, there is great difficulty in determining whether such effects, if they are sublethal, occur in the sea. There is even more difficulty in deciding whether they produce significant harm in loss of organic production affecting, for example, the living resources of the sea: the stocks of fish and shellfish. Extrapolation from the results of laboratory experiments to the situation in the sea is hazardous because of the simplicity of experimental conditions in comparison with the complexity of the marine environment.


1984 ◽  
Vol 41 (3) ◽  
pp. 469-475 ◽  
Author(s):  
D. M. Rimmer ◽  
U. Paim ◽  
R. L. Saunders

Over three summers we used direct underwater observation to examine the summer to autumn differences in seven microhabitat properties of three age-classes of juvenile Atlantic salmon (Salmo salar) in the Little Sevogle River of northeastern New Brunswick. Salmon of all three age-classes occupied a wide range of water depths during summer, but were concentrated mainly in depths of 24–36 cm. In autumn, they occurred in this range almost exclusively. The streambed stones most closely associated with the individual positions of all ages were always <20 cm in summer and mostly (84–92%) <10 cm in diameter. In autumn, all ages were associated with home stones up to 40 cm in diameter, with 65–83% of the stones exceeding 20 cm; the size of home stones selected increased with fish age in autumn. There was no apparent relationship between the water depth and home stone size distributions occupied by all age-classes and available in the stream during either summer or autumn. Summer focal water velocity (velocity at the fish's snout) was predominantly 10–30 cm∙s−1 for 0+, 10–40 cm∙s−1 for 1+, and 30–50 cm∙s−1 for 2+ salmon, but during autumn it was almost always <10 cm∙s−1 for all ages. The bottom and surface water velocities as well as the maximum water velocity within 1 m of fish stations increased with fish age during summer and autumn. At the summer–autumn transition, 0+ salmon selected higher bottom, surface, and maximum water velocities, 2+ salmon selected lower velocities, but selection by 1+ salmon remained unchanged. We view substrate size followed by water depth as the primary properties influencing stream suitability for juvenile Atlantic salmon in autumn.


Sign in / Sign up

Export Citation Format

Share Document