scholarly journals Betung bamboo-based activated carbon bioadsorbent for the separation of hydrogen-methane gas mixture

2018 ◽  
Vol 67 ◽  
pp. 02039
Author(s):  
Mahmud Sudibandriyo ◽  
Melody Oratmangun

Hydrogen recovery from off gas of hydrocracking and hydrotreating unit is one of the crucial processes in an oil and gas refinery unit as this process helps in lowering the expenses for operations. This study aims to obtain activated carbon that is made from Betung bamboo which can be used as the adsorbent in this process. The activated agents used are H3PO4 and K2CO3, respectively. Each activation lasts for 30 minutes. The results of the characterization test shows that the Iodine number of the activated carbon produced reaches 916.4 mg/g with BET surface area of 465.2 m2/g. SEM-EDX analysis shows that the carbon content is 74.83%. The activated carbon obtained is used to separate Hydrogen and Methane from its mixture at 10, 20 and 30oC with pressure variations of 1 - 6 bar. The results indicate that the maximum number of moles adsorbed from CH4(21.5%)/H2 gas mixture is 0.247 mmol/g, that has been carried out at 6 bar with temperature of 10oC. Methane has 2.2 times higher adsorption capacity than hydrogen, therefore, the Betung bamboo based activated carbon produced from this research can be applied as the adsorbent in the separation process of CH4/H2 mixture and it fits the Langmuir model.

2021 ◽  
Vol 11 (9) ◽  
pp. 3994
Author(s):  
Suhdi ◽  
Sheng-Chang Wang

Fine activated carbon (FAC) is prepared from rubber fruit shells (RFS) using two chemical activating agents (ZnCl2 and KOH) and three impregnation ratios (1:3, 1:4, and 1:5). The Brunauer–Emmett–Teller (BET) results show that for a constant impregnation ratio, the ZnCl2 activating agent yields a higher specific surface area than the KOH agent. In particular, for the maximum impregnation ratio of 1:5, the FAC prepared using ZnCl2 has a BET surface area of 456 m2/g, a nitrogen absorption capacity of 150.38 cm3/g, and an average pore size of 3.44 nm. Moreover, the FAC structure consists of 70.1% mesopores and has a carbon content of 80.05 at.%. Overall, the results confirm that RFS, activated using an appropriate quantity of ZnCl2, provides a cheap, abundant, and highly promising precursor material for the preparation of activated carbon with high carbon content and good adsorption properties


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
S. G. Herawan ◽  
M. A. Ahmad ◽  
A. Putra ◽  
A. A. Yusof

Activated carbons are regularly used the treatment of dye wastewater. They can be produced from various organics materials having high level of carbon content. In this study, a novel Pinang frond activated carbon (PFAC) was produced at various CO2flow rates in the range of 150–600 mL/min at activation temperature of 800°C for 3 hours. The optimum PFAC sample is found on CO2flow rate of 300 mL/min which gives the highest BET surface area and pore volume of 958 m2/g and 0.5469 mL/g, respectively. This sample shows well-developed pore structure with high fixed carbon content of 79.74%. The removal of methylene blue (MB) by 95.8% for initial MB concentration of 50 mg/L and 72.6% for 500 mg/L is achieved via this sample. The PFAC is thus identified to be a suitable adsorbent for removing MB from aqueous solution.


2018 ◽  
Vol 929 ◽  
pp. 128-135
Author(s):  
Sheila Nabila Putri ◽  
Mahmud Sudibandriyo

The objective of the study is to obtain suitable adsorbent to be applied for the purification of hydrogen from hydrogen-methane gas mixture. The application will be used to increase the efficiency of process in refinery unit focusing on hydrogen supply as the feed of hydrocracking unit. One of the promising technology is adsorption. In this study, adsorbent used is utilized by palm shell based bioadsorbent activated carbon which is a potential raw material among others due to its carbon and lignin content also its abundant supply. The activated carbon is going through chemical activation using H3PO4 to increase its surface area. Characteristic test of produced activated carbon is measured to obtain surface area which resulted in BET surface area of 414.91 m2/g and iodine number of 716 mg/g. In this case, a detailed experimental study has been made for the adsorption of pure methane, and pure hydrogen at 20°C and CH4/H2 gas mixture at 10, 20, and 30°C isothermal condition with pressure variation for each isothermal condition 1 – 6 bar. Measurement were made using volumetric technique coupled with gas chromatographic analysis. The result of adsorption test shows at 20°C adsorption of pure CH4 was highest followed by mixture gas of CH4/H2 with 1.5% methane then pure H2. The adsorption of gas mixture for any composition of gas were increased with increasing pressure at all temperatures. At the same pressure, adsorption of gas mixture that composed of 8.5% methane at 10 and 30°C increased in lower isothermal condition. Based on gas chromatograph analysis, in all conditions methane in gas mixture is all adsorbed to activated carbon. The trend of isothermal adsorption also fits the Langmuir model of isothermal adsorption.


2018 ◽  
Vol 67 ◽  
pp. 02046
Author(s):  
Mahmud Sudibandriyo ◽  
Faracitra Kusumadewi

Hydrogen recovery from off-gas of hydrocracking unit by adsorption is one of the process that could increase the efficiency processes of refinery unit. The purpose of this research is to make coffee grounds based activated carbon bioadsorbent that will be used in hydrogen recovery proses. The carbon was prepared by chemical activation using ZnCl2 at temperature 600°C. The surface area of produced activated carbon was measured using BET and Iodine number, while its surface morphology and composition were characterized using SEM-EDX. The adsorption capacity of activated carbon and its selectivity will be tested using hydrogen-methane gas mixture. The test was carried out on pure methane and hydrogen gas at 20°C and a mixture of CH4/H2 (mole ratio: 4:1) at 10°C, 20°C and 30°C and pressures from 1 to 6 bars. The results of this study show that the activated carbon can be successfully produced having the specific surface area of 728.07 m2/g and the iodine number of 2160 mg/g. The result shows that the adsorption of pure CH4 gas at the same pressure was 2.4 times greater than pure H2. The adsorption test indicates that the produced activated carbon might be used for hydrogen/methane separation.


Membranes ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 286
Author(s):  
Roba M. Almuhtaseb ◽  
Ahmed Awadallah-F ◽  
Shaheen A. Al-Muhtaseb ◽  
Majeda Khraisheh

Polysulfone membranes exhibit resistance to high temperature with low manufacturing cost and high efficiency in the separation process. The composition of gases is an important step that estimates the efficiency of separation in membranes. As membrane types are currently becoming in demand for CO2/CH4 segregation, polysulfone will be an advantageous alternative to have in further studies. Therefore, research is undertaken in this study to evaluate two solvents: chloroform (CF) and tetrahydrofuran (THF). These solvents are tested for casting polymeric membranes from polysulfone (PSF) to separate every single component from a binary gas mixture of CO2/CH4. In addition, the effect of gas pressure was conducted from 1 to 10 bar on the behavior of the permeability and selectivity. The results refer to the fact that the maximum permeability of CO2 and CH4 for THF is 62.32 and 2.06 barrer at 1 and 2 bars, respectively. Further, the maximum permeability of CF is 57.59 and 2.12 barrer at 1 and 2 bars, respectively. The outcome selectivity values are 48 and 36 for THF and CF at 1 bar, accordingly. Furthermore, the study declares that with the increase in pressure, the permeability and selectivity values drop for CF and THF. The performance for polysulfone (PSF) membrane that is manufactured with THF is superior to that of CF relative to the Robeson upper bound. Therefore, through the results, it can be deduced that the solvent during in-situ synthesis has a significant influence on the gas separation of a binary mixture of CO2/CH4.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 257
Author(s):  
Jie Ren ◽  
Nanwei Chen ◽  
Li Wan ◽  
Guojian Li ◽  
Tao Chen ◽  
...  

In this study, a new method for economical utilization of coffee grounds was developed and tested. The resulting materials were characterized by proximate and elemental analyses, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and N2 adsorption–desorption at 77 K. The experimental data show bio-oil yields reaching 42.3%. The optimal activated carbon was obtained under vacuum pyrolysis self-activation at an operating temperature of 450 °C, an activation temperature of 600 °C, an activation time of 30 min, and an impregnation ratio with phosphoric acid of 150 wt.%. Under these conditions, the yield of activated carbon reached 27.4% with a BET surface area of 1420 m2·g−1, an average pore size of 2.1 nm, a total pore volume of 0.747 cm3·g−1, and a t-Plot micropore volume of 0.428 cm3·g−1. In addition, the surface of activated carbon looked relatively rough, containing mesopores and micropores with large amounts of corrosion pits.


2019 ◽  
Vol 81 (3) ◽  
Author(s):  
N. Masdiana ◽  
M. Rashid ◽  
S. Hajar ◽  
M. R. Ammar

TrikotAC filter aids is a combination of a pre-coating material PreKot™ with two adsorbents; activated carbon and lime and their characteristics were investigated in this study. TrikotAC was formulated into three different weight ratios of 5:1:94, 10:1:89 and 10:5:85, respectively. The relationship between adsorption properties and characteristics of the formulated materials particle size distribution, particle density, bulk density, and BET surface area were investigated. The results showed that the adsorption capacity for TrikotAC 10:5:85 (11.88 mg/g) was higher than for the other formulated filter aids samples, and the formulated filter aids material TrikotAC showed promising characteristic as a filter aids and adsorbent for organic compound in fabric filtration system.


2015 ◽  
Vol 6 (1) ◽  
pp. 30-34 ◽  
Author(s):  
Iraj Mohammadfam ◽  
Susan Bastani ◽  
Mahbobeh Esaghi ◽  
Rostam Golmohamadi ◽  
Ali Saee

2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
Victoria Ezeagwula ◽  
Precious Igbokwubiri

Abstract Bamboo trees are one of the fastest growing trees in tropical rainforests around the world, they have various uses ranging from construction to fly ash generation used in oil and gas cementing, to development of activated carbon which is one of the latest uses of bamboo trees. This paper focuses on development of activated carbon from bamboo trees for carbon capture and sequestration. The need for improved air quality becomes imperative as the SDG Goal 12 and SDG Goal13 implies. One of the major greenhouse gases is CO2 which accounts for over 80% of greenhouse gases in the environment. Eliminating the greenhouse gases without adding another pollutant to the environment is highly sought after in the 21st century. Bamboo trees are mostly seen as agricultural waste with the advent of scaffolding and other support systems being in the construction industry. Instead of burning bamboo trees or using them for cooking in the local communities which in turn generates CO2 and fly ash, an alternative was considered in this research work, which is the usage of bamboo trees to generate activated, moderately porous and high surface area carbon for extracting CO2 from various CO2 discharge sources atmosphere and for water purification. This paper focuses on the quality testing of activated carbon that can effectively absorb CO2. The porosity, pore volume, bulk volume, and BET surface area were measured. The porosity of the activated carbon is 27%, BET surface area as 1260m²/g. Fixed carbon was 11.7%, Volatility 73%, ash content 1.7%.


Sign in / Sign up

Export Citation Format

Share Document