scholarly journals Effects of hyperaccumulator plant straw on biomass and cadmium accumulation of lettuce

2019 ◽  
Vol 136 ◽  
pp. 07005
Author(s):  
Le Liang ◽  
Ran Zhang ◽  
Yan Zhao ◽  
Ying Zhu ◽  
Qiaoman Ao ◽  
...  

To study the effects of hyper-accumulator plant straw on the biomass and cadmium (Cd) accumulation of lettuce (Lactuca sativa), the pot experiments were conducted to study the effects of straw application of three hyper-accumulator plants (Solanum nigrum, Bidens pilosa and Galinsoga parviflora) on the biomass and Cd accumulation of lettuce under Cd stress. The results show that: compared with no straw application, the biomass of lettuce was increased after applying three kinds of hyper-accumulator plant straw: S. nigrum, B. pilosa and G. parviflora, Cd content in the above ground part of lettuce was increased by 4.46%, 1.20% and 0.63% respectively, compared with that of non-application, and Cd content in the root of lettuce was decreased. The application of three kinds of hyperaccumulator plant straw promoted the growth of lettuce and increased Cd uptake by lettuce of aerial part.

Life ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 324
Author(s):  
Peng Ye ◽  
Menghua Wang ◽  
Teng Zhang ◽  
Xiaoyu Liu ◽  
He Jiang ◽  
...  

Solanum nigrum L., a hyperaccumulator of cadmium (Cd), is regarded as a promising candidate for phytoremediation of heavy metal pollution. In the present study, the hairy roots of Solanum nigrum L. were selected as a model plant system to study the potential application of Iron-regulated Transporter Gene (IRT1) for the efficient phytoremediation of Cd pollution. The transgenic hairy roots of Solanum nigrum L. expressing the IRT1 gene from Arabidopsis thaliana were successfully obtained via the Agrobacterium tumegaciens-mediated method. Expression of IRT1 reduced Cd stress-induced phytotoxic effects. Significantly superior root growth, increased antioxidant enzyme activities, decreased reactive oxygen species (ROS) levels, and less cell apoptosis were observed in the transgenic hairy roots of Solanum nigrum L. compared to the wild-type lines under Cd stress. Enhanced Cd accumulation was also carried out in the transgenic hairy roots compared to the control (886.8 μg/g vs. 745.0 μg/g). These results provide an important understanding of the Cd tolerance mechanism of transgenic IRT1 hairy roots of Solanum nigrum L., and are of particular importance to the development of a transgenic candidate for efficient phytoremediation process.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 223 ◽  
Author(s):  
Xin Huang ◽  
Songpo Duan ◽  
Qi Wu ◽  
Min Yu ◽  
Sergey Shabala

Cadmium (Cd) is present in many soils and, when entering the food chain, represents a major health threat to humans. Reducing Cd accumulation in plants is complicated by the fact that most known Cd transporters also operate in the transport of essential nutrients such as Zn, Fe, Mn, or Cu. This work summarizes the current knowledge of mechanisms mediating Cd uptake, radial transport, and translocation within the plant. It is concluded that real progress in the field may be only achieved if the transport of Cd and the above beneficial micronutrients is uncoupled, and we discuss the possible ways of achieving this goal. Accordingly, we suggest that the major focus of research in the field should be on the structure–function relations of various transporter isoforms and the functional assessment of their tissue-specific operation. Of specific importance are two tissues. The first one is a xylem parenchyma in plant roots; a major “controller” of Cd loading into the xylem and its transport to the shoot. The second one is a phloem tissue that operates in the last step of a metal transport. Another promising and currently underexplored avenue is to understand the role of non-selective cation channels in Cd uptake and reveal mechanisms of their regulation.


2020 ◽  
Author(s):  
Yiran Cheng ◽  
Xu Zhang ◽  
Sha Wang ◽  
Xue Xiao ◽  
Jian Zeng ◽  
...  

Abstract Background To study the cadmium (Cd) accumulation in wheat grain, we evaluated the grain Cd concentrations of 46 common wheat cultivars grown at two sites in Sichuan, China and selected five different grain Cd accumulators (a high-Cd accumulator ZM18, four low-Cd accumulators YM51, YM53, SM969 and CM104) to explore the physiological processes of Cd accumulation in the grain of wheat grown under varying degrees of Cd stress. Results Our results showed that the Cd concentration in grain differed among genotypes. Under low-Cd stress, the grain Cd concentration was correlated with the Cd translocation factor (TF) of roots to grain and all the Cd redistribution factors (RFs). Compared with the ZM18, the cultivars YM53 and SM969 accumulated less Cd in the grain due to low Cd redistribution from lower stems and older leaves to grain. The low-Cd accumulators YM51 and CM104 were due to low Cd transport from roots to grain, and low Cd redistribution from glumes, flag leaves, lower stems, and older leaves to grain. Under high-Cd stress, the ZM18, YM53, and SM969 accumulated significantly more Cd in the grain, root and other tissues than did YM51 and CM104. Correlation analyses showed that the grain Cd concentration of wheat under high Cd stress was positively correlated with the Cd concentration in each tissue and the TFs of roots to grains, rachis, internode 1 and flag leaves. Conclusions Cd translocation directly from roots to grain and Cd redistribution from shoots to grain determines the Cd accumulation in grain of wheat cultivars under low-Cd stress. Cd uptake by root and then synchronously transported to new shoots determined the differences of Cd accumulation in the grain of wheat cultivars under high Cd stress.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244085
Author(s):  
Mohammad Mazbah Uddin ◽  
Zhenfang Chen ◽  
Lingfeng Huang

Sesuvium portulacastrum is a well-known halophyte with considerable Cd accumulation and tolerance under high Cd stress. This species is also considered as a good candidate of Cd phytoremediation in the polluted soils. However, the mechanism of Cd accumulation, distribution and fractionation in different body parts still remain unknown. Seedlings of Sesuvium portulacastrum were studied hydroponically under exposure to a range of Cd concentrations (50 μM or μmol/L to 600 μM or μmol/L) for 28 days to investigate the potential accumulation capability and tolerance mechanisms of this species. Cd accumulation in roots showed that the bio-concentration factor was > 10, suggesting a strong ability to absorb and accumulate Cd. Cd fractionation in the aboveground parts showed the following order of distribution: soluble fraction > cell wall > organelle > cell membrane. In roots, soluble fraction was mostly predominant than other fractions. Cd speciation in leaves and stems was mainly contained of sodium chloride and deionised water extracted forms, suggesting a strong binding ability with pectin and protein as well as with organic acids. In the roots, inorganic form of Cd was dominant than other forms of Cd. It could be suggested that sodium chloride, deionised water and inorganic contained form of Cd are mainly responsible for the adaption of this plant in the Cd stress environment and alleviating Cd toxicity.


2019 ◽  
Vol 136 ◽  
pp. 07007
Author(s):  
Le Liang ◽  
Qiaoman Ao ◽  
Ying Zhu ◽  
Yan Zhao ◽  
Ran Zhang ◽  
...  

Pot experiments were conducted to study the effects of straw application of three hyperaccumulator plants (Solanum nigrum, Bidens pilosa and Galinsoga parviflora) influence photosynthetic pigments content and photosynthetic parameters of lettuce (Lactuca sativa) under Cd stress. The results showed that: compared with no straw application, the photosynthetic pigment content of lettuce was increased by applying three kinds of hyperaccumulator plants straw (S. nigrum, B. pilosa and G. parviflora), but there was no significant difference among the three kinds of hyperaccumulator plant straws; also improved the net photosynthetic rate (Pn), Stomatal conductance (Gs), transpiration rate (Tr), intercellular CO2 concentration (Ci) of lettuce, among them, the effect of G. parviflora straw was the most obvious. Application of three kinds of hyperaccumulator plant straw promoted the growth of lettuce by increasing the photosynthetic pigment content and photosynthetic parameter of lettuce under Cd stress.


2019 ◽  
Vol 136 ◽  
pp. 07011
Author(s):  
Kewen Huang ◽  
Xinyu Gao ◽  
Ling Xiao ◽  
Junjiang Shu ◽  
Qinyuan Li ◽  
...  

In order to improve the nutrients absorption of grape seedlings under cadmium (Cd) stress, the effects of Solanum nigrum, Crassocephalum crepidioides and Bidens pilosa straws on the nutrients content of soil and grape seedlings under Cd stress were studied by pot experiment. According to the results, the activity of soil phosphatase, soil catalase and soil sucrose by soil application of straws observed higher than CK to varying degrees. And soil application of straws increased the contents of soil alkaline nitrogen and available phosphorus in different degrees, while soil application of B. pilosa straws decreased the content of soil available potassium. In addition, the soil application of straws had a certain promoting effect on the total nitrogen content, total phosphorus content and total potassium content of grape seedlings compared with the CK. Among all treatments, C. crepidioides straws maximized the nutrients content in the shoots of grape seedlings, which could provide reference for grape cultivation in Cd-contaminated areas.


Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 377
Author(s):  
Sary H. Brengi ◽  
Abdel-Ghany M. El-Gindy ◽  
Islam El-Sharkawy ◽  
Ibrahim A. Abouelsaad

Potato (Solanum tuberosum L.) is an important crop in Egypt with great trade value for the export market. The addition of agrochemicals with possibly containing heavy metals, such as cadmium (Cd), decreases the quality of the final product. Generally, little is known about the factors that influence Cd content in this crop. The current study estimated the Cd levels in different organs of three potato cultivars grown in four commercial regions across Egypt. Further, we investigated the soil properties that affected Cd uptake during two growing seasons. With the exception of the Cd content of the soils, no relationships were detected between the tested soil properties (i.e., pH, conductivity, organic matter, and clay content) and Cd content in potato organs, because the soil from different regions showed comparable levels for these parameters. The average Cd content in the peeled tubers among different cultivars (0.145 mg Kg−1 DW) was below the maximum limit (0.5 mg Kg−1 DW). The patterns of Cd accumulation in potato organs were constant among cultivars, with the highest levels detected in leaves (~82%), followed by stems (~16.5%), and the lowest content observed in tubers (~1.5%). The study showed that the tested potato cultivars exhibited diversity in the accumulation levels of Cd in the tubers (~2.6-fold). The cultivar Suntana displayed the lowest Cd levels among different field sites for the two growing seasons, suggesting the potential involvement of genetic factors.


2007 ◽  
Vol 73 (19) ◽  
pp. 6317-6320 ◽  
Author(s):  
Seung Hyun Kang ◽  
Shailendra Singh ◽  
Jae-Young Kim ◽  
Wonkyu Lee ◽  
Ashok Mulchandani ◽  
...  

ABSTRACT Phytochelatins (PCs) with good binding affinities for a wide range of heavy metals were exploited to develop microbial sorbents for cadmium removal. PC synthase from Schizosaccharomyces pombe (SpPCS) was overexpressed in Escherichia coli, resulting in PC synthesis and 7.5-times-higher Cd accumulation. The coexpression of a variant γ-glutamylcysteine synthetase desensitized to feedback inhibition (GshI*) increased the supply of the PC precursor glutathione, resulting in further increases of 10- and 2-fold in PC production and Cd accumulation, respectively. A Cd transporter, MntA, was expressed with SpPCS and GshI* to improve Cd uptake, resulting in a further 1.5-fold increase in Cd accumulation. The level of Cd accumulation in this recombinant E. coli strain (31.6 μmol/g [dry weight] of cells) was more than 25-fold higher than that in the control strain.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhenqing Bai ◽  
Dan Li ◽  
Lin Zhu ◽  
Xiaoyu Tang ◽  
Yanfeng Wang ◽  
...  

Sweet sorghum has potential for phytoextraction of cadmium (Cd) owning to its large biomass and relatively high Cd tolerance. Nitrogen affects both growth and Cd concentrations in plants. However, different forms of nitrogen effects on Cd accumulation in sweet sorghum to improve efficiency of Cd phytoremediation is still elusive. In this study, nitrate substantially promoted both dry weight and Cd concentrations in leaves, stems + sheaths and roots of sweet sorghum when compared with ammonium. As a result, Cd accumulation in nitrate-supplied sweet sorghum was around 3.7-fold of that in ammonium-supplied plants under unbuffered pH condition, while the fold was about 2.2 under buffered pH condition. We speculated pH values and Cd species in the growth medium to some extent contributed to increased Cd accumulation as affected by nitrate. Net photosynthesis rate and Fv/Fm of nitrate-treated plants under Cd stress were higher than that of ammonium-treated plants when the pH was unbuffered. Responses of antioxidant capacity in roots to Cd stress with nitrate application were stronger than that with ammonium supplementation. Taken together, nitrate is more suitable than ammonium for Cd phytoextraction by using sweet sorghum, which is able to enhance at least double efficiency of phytoextraction.


Sign in / Sign up

Export Citation Format

Share Document