scholarly journals The effect of using synthetic fibers on some properties of modified juss

2018 ◽  
Vol 162 ◽  
pp. 02005
Author(s):  
Nada Mahdi Fawzi ◽  
Luma Abdul Ghani Zghair ◽  
Hind Hussein Hamad

This paper examines the mechanical properties of a composite material made of modified Iraqi gypsum (juss) reinforced with polypropylene fibers. The modified juss was prepared by adding two percentages of cement (5, 10) %. Two percentages of polypropylene fibers were used, to reinforce the modified juss (1, 2) %. The water/dry compound ratio used was equal to 0.53%. The composite was evaluated based on compressive strength, flexural strengths, absorption percentage, density, acoustic impedance, ultra - pulse velocity, longitudinal shrinkage and setting time tests. The results indicated that the inclusion of cement on to juss increases the compressive strength, absorption percentage, density, acoustic impedance, ultra - pulse velocity, longitudinal shrinkage and a reduction in flexural strength and setting time were observed by adding the cement. In addition, the inclusion of polypropylene fiber was significant in improving mechanical performance of the composite material, it shows a great improvement in longitudinal shrinkage, modulus of rupture and absorption percentages.

Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 946
Author(s):  
Oriana Rojas-Duque ◽  
Lina Marcela Espinosa ◽  
Rafael A. Robayo-Salazar ◽  
Ruby Mejía de Gutiérrez

This article reports the production and characterization of a hybrid concrete based on the alkaline activation of a fly ash (FA) of Colombian origin, which was added with 10% Portland cement (OPC) in order to promote the compressive strength development at room temperature. The alkali-activated hybrid cement FA/OPC 90/10 was classified as a low heat reaction cement (type LH), according to American Society of Testing Materials, ASTM C1157; the compressive strength was of 31.56 MPa and of 22.68 MPa (28 days) at the levels of paste and standard mortar, respectively, with an initial setting time of 93.3 min. From this binder, a hybrid concrete was produced and classified as a structural type, with a compressive strength of 23.16 MPa and a flexural modulus of rupture of 5.32 MPa, at 28 days of curing. The global warming potential index (GWP 100), based on life cycle analysis, was 35% lower than the reference concrete based on 100% OPC. Finally, its use was validated in the manufacture of a solid block-type construction element, which reached a compressive strength of 21.9 MPa at 28 days, exceeding by 40.6% the minimum strength value established by the Colombia Technical Standard, NTC 4026 (13 MPa) to be classified as high class structural blocks.


2011 ◽  
Vol 228-229 ◽  
pp. 627-633
Author(s):  
Tammam Merhej ◽  
Liang Liang Cheng ◽  
De Cheng Feng

The effect of adding polypropylene fibers; with different shapes and volume fractions; on the compressive strength, modulus of rupture, load-deflection curve and flexural toughness (equivalent flexural strength ratio) of concrete was investigated. Crimped and twisted polypropylene fibers were used with 0.0%, 0.2%, 0.4% and 0.6% volume fractions. It was found that the compressive strength, flexural strength and the equivalent flexural strength ratio of concrete increased about 11%, 25% and 40% respectively by adding 0.6% volume fraction of twisted polypropylene fiber. In addition; it was found that the contribution of polypropylene fiber to the flexural strength and flexural toughness was more effective when twisted polypropylene fiber was added comparing to crimped polypropylene fibers. The experimental results were used in numerical example using FAARFIELD program to explore the airfield pavement thickness reduction resulted from polypropylene fiber incorporation.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3644 ◽  
Author(s):  
An Thao Huynh ◽  
Bryan Magee ◽  
David Woodward

This article considers semi-flexible composite (SFC) pavement materials made with reclaimed asphalt planings (RAP) and geopolymer cement-based grouts. Geopolymer grouts were developed and used to fill the internal void structure of coarse RAP skeletons with varying levels of porosity. The geopolymer grouts were formulated at ambient temperature using industrial by-products to offer economic and environmental savings relative to conventional Portland cement-based grouting systems. They were characterised on flowability, setting time, and compressive strength. The effect of grout and RAP on SFC material performance was evaluated using permeable porosity, compressive strength, and ultrasonic pulse velocity. SFC performance was significantly influenced by both grout type and RAP content. Improved performance was associated with mixtures of high-flowability/high-strength grout and low RAP content. A practical limitation was identified for combination of grout with low-flowability/fast-setting time and well-compacted RAP skeletons. Solids content exceeding 49% by volume was not feasible, owing to inadequate grout penetration. A suite of SFC materials was produced offering performance levels for a range of practical pavement applications. Preliminary relationships enabling prediction of SFC elastic modulus based on strength and/or ultrasonic pulse velocity test data are given. A pavement design is given using SFC as a sub-base layer for an industrial hardstanding.


2016 ◽  
Vol 841 ◽  
pp. 104-110 ◽  
Author(s):  
Arie Wardhono ◽  
David W. Law ◽  
Thomas C.K. Molyneaux

This paper reports on experimental work that has been undertaken to investigate the flexural strength performance of fly ash-based geopolymer (FG) concrete. The FG concrete was prepared using low calcium class F fly ash with high silicate content. The flexural strength properties of FG were assessed using modulus of rupture test up to the age of 360 days. Compressive strength and Ultrasonic Pulse Velocity (UPV) tests were also performed to corroborate the flexural strength test results. The results showed that the FG concrete demonstrates a comparable compressive strength and velocity to OPC concrete. Hewever, the flexural strength of FG concrete exhibited a better performance compared to that OPC concrete. The measured flexural strength of FG concrete also exhibited a higher value compared to the predicted one using ACI 318M-08 standard. The relationship between flexural strength with compressive strength demonstrated a similarity behavior to that OPC concrete. Thus, it can be concluded that the use of the ACI standard can be applied conservatively to determine the flexural strength of fly ash-based geopolymer concrete.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Wilfrido Martínez-Molina ◽  
Andrés Antonio Torres-Acosta ◽  
Juan Carlos Jáuregui ◽  
Hugo Luis Chávez-García ◽  
Elia Mercedes Alonso-Guzmán ◽  
...  

Quality tests applied to hydraulic concrete such as compressive, tension, and bending strength are used to guarantee proper characteristics of materials. All these assessments are performed by destructive tests (DTs). The trend is to carry out quality analysis using nondestructive tests (NDTs) as has been widely used for decades. This paper proposes a framework for predicting concrete compressive strength and modulus of rupture by combining data from four NDTs: electrical resistivity, ultrasonic pulse velocity, resonant frequency, and hammer test rebound with DTs data. The model, determined from the multiple linear regression technique, produces accurate indicators predictions and categorizes the importance of each NDT estimate. However, the model is identified from all the possible linear combinations of the available NDT, and it was selected using a cross-validation technique. Furthermore, the generality of the model was assessed by comparing results from additional specimens fabricated afterwards.


2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Sudarmadi Sudarmadi

In this paper a case study about concrete strength assessment of bridge structure experiencing fire is discussed. Assessment methods include activities of visual inspection, concrete testing by Hammer Test, Ultrasonic Pulse Velocity Test, and Core Test. Then, test results are compared with the requirement of RSNI T-12-2004. Test results show that surface concrete at the location of fire deteriorates so that its quality is decreased into the category of Very Poor with ultrasonic pulse velocity ranges between 1,14 – 1,74 km/s. From test results also it can be known that concrete compressive strength of inner part of bridge pier ranges about 267 – 274 kg/cm2 and concrete compressive strength of beam and plate experiencing fire directly is about 173 kg/cm2 and 159 kg/cm2. It can be concluded that surface concrete strength at the location of fire does not meet the requirement of RSNI T-12-2004. So, repair on surface concrete of pier, beam, and plate at the location of fire is required.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1611
Author(s):  
Gintautas Skripkiūnas ◽  
Asta Kičaitė ◽  
Harald Justnes ◽  
Ina Pundienė

The effect of calcium nitrate (CN) dosages from 0 to 3% (of cement mass) on the properties of fresh cement paste rheology and hardening processes and on the strength of hardened concrete with two types of limestone-blended composite cements (CEM II A-LL 42.5 R and 42.5 N) at different initial (two-day) curing temperatures (−10 °C to +20 °C) is presented. The rheology results showed that a CN dosage up to 1.5% works as a plasticizing admixture, while higher amounts demonstrate the effect of increasing viscosity. At higher CN content, the viscosity growth in normal early strength (N type) cement pastes is much slower than in high early strength (R type) cement pastes. For both cement-type pastes, shortening the initial and final setting times is more effective when using 3% at +5 °C and 0 °C. At these temperatures, the use of 3% CN reduces the initial setting time for high early strength paste by 7.4 and 5.4 times and for normal early strength cement paste by 3.5 and 3.4 times when compared to a CN-free cement paste. The most efficient use of CN is achieved at −5 °C for compressive strength enlargement; a 1% CN dosage ensures the compressive strength of samples at a −5 °C initial curing temperature, with high early strength cement exceeding 3.5 MPa but being less than the required 3.5 MPa in samples with normal early strength cement.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2073
Author(s):  
Qiubai Deng ◽  
Zhenyu Lai ◽  
Rui Xiao ◽  
Jie Wu ◽  
Mengliang Liu ◽  
...  

Waste glass is a bulk solid waste, and its utilization is of great consequence for environmental protection; the application of waste glass to magnesium phosphate cement can also play a prominent role in its recycling. The purpose of this study is to evaluate the effect of glass powder (GP) on the mechanical and working properties of magnesium potassium phosphate cement (MKPC). Moreover, a 40mm × 40mm × 40mm mold was used in this experiment, the workability, setting time, strength, hydration heat release, porosity, and microstructure of the specimens were evaluated. The results indicated that the addition of glass powder prolonged the setting time of MKPC, reduced the workability of the matrix, and effectively lowered the hydration heat of the MKPC. Compared to an M/P ratio (MgO/KH2PO4 mass ratio) of 1:1, the workability of the MKPC with M/P ratios of 2:1 and 3:1 was reduced by 1% and 2.1%, respectively, and the peak hydration temperatures were reduced by 0.5% and 14.6%, respectively. The compressive strength of MKPC increased with an increase in the glass powder content at the M/P ratio of 1:1, and the addition of glass powder reduced the porosity of the matrix, effectively increased the yield of struvite-K, and affected the morphology of the hydration products. With an increase in the M/P ratio, the struvite-K content decreased, many tiny pores were more prevalent on the surface of the matrix, and the bonding integrity between the MKPC was weakened, thereby reducing the compressive strength of the matrix. At less than 40 wt.% glass powder content, the performance of MKPC improved at an M/P ratio of 1:1. In general, the addition of glass powders improved the mechanical properties of MKPC and reduced the heat of hydration.


Sign in / Sign up

Export Citation Format

Share Document