scholarly journals Characterization of laser-borided Nimonic 80A-alloy

2018 ◽  
Vol 188 ◽  
pp. 02003 ◽  
Author(s):  
Piotr Kieruj ◽  
Natalia Makuch ◽  
Mateusz Kukliński

Nimonic 80A-alloy belongs to Nickel-based superalloys. Many of them are used in variety branches of industry due to high strength and resistance in aggressive conditions. Moreover, its mechanical properties are kept in high temperature. However, these materials should be coated by appropriate wear protection, under conditions of considerable mechanical wear. Unfortunately, the production of thick borided layer in diffusion boriding required high temperature and long duration of this processes. Therefore, in this study instead conventional diffusion process laser boriding was applied in order to produce boride layer on Nimonic 80A-alloy substrate. Laser alloying is the high-tech process which allows to modify the chemical composition of the surface. Laser boriding was arranged as a single tracks, therefore it was possible to evaluate the influence of laser treatment parameters on thickness and hardness of produced layers. The laser beam power P, laser scanning speed vl and laser beam diameter dl were the variable parameters used during laser alloying.

Author(s):  
N. Makuch ◽  
P. Dziarski ◽  
M. Kulka

Purpose: The aim of this paper was to determine the influence of laser treatment parameters on temperature distribution and thickness of laser-alloyed layers produced on Nimonic 80A-alloy. Design/methodology/approach: In this paper laser alloying was used in order to produce layers on Nimonic 80A-alloy surface. The three types of the alloying materials were applied: B, B+Nb and B+Mo. Microstructure observations were carried out using an optical microscope. The hardness measurements were performed using a Vickers method under a load of 0.981 N. For evaluation of temperature distribution the equations developed by Ashby and Esterling were used. Findings: The produced layers consisted of re-melted zone only and were characterized by high hardness (up to 1431 HV0.1). The increase in laser beam power caused an increase in thickness and decrease in hardness of re-melted zones. The temperature distribution was strongly dependent on laser treatment parameters and physical properties of alloying material. The higher laser beam power, used during laser alloying with boron, caused an increase in layer thickness and temperature on the treated surface. The addition of Mo or Nb for alloying paste caused changes in melting conditions. Research limitations/implications: The obtained results confirmed that laser beam power used for laser alloying influenced the thickness and hardness of the produced layers. Moreover, the role of type of alloying material and its thermal properties on melting condition was confirmed. Practical implications: Laser alloying is the promising method which can be used in order to form very thick and hard layers on the surface of Ni-base alloys. The obtained microstructure, thickness and properties strongly dependent on laser processing parameters such as laser beam diameter, laser beam power, scanning rate as well as on the type of alloying material and its thickness, or type of substrate material. Originality/value: In this paper the influence of alloying material on temperature distribution, thickness and hardness of the laser-alloyed layers was in details analyzed.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3249 ◽  
Author(s):  
Aneta Bartkowska ◽  
Dariusz Bartkowski ◽  
Mikołaj Popławski ◽  
Adam Piasecki ◽  
Damian Przestacki ◽  
...  

The paper presents study results of laser alloying of CT90 tool steel with an applied pre-coat of boron, molybdenum or a mixture of these elements. Pre-coats were applied on steel substrates in the form of a paste. The aim of the study was to investigate the microstructure, chemical and phase composition, microhardness and corrosion resistance of these newly-formed coatings. The laser alloying process was carried out using a diode laser with a nominal power of 3 kW. In this study a laser beam power of 900 W and a scanning speed of 48 mm/s were used. As a result of the laser beam action, the presence of three areas was observed in cross-sections of specimens: a remelted zone, a heat affected zone and the substrate. The properties of coatings enriched with both molybdenum and boron were better than those of the steel substrate, but only the use of a Mo-B mixture resulted in a significant improvement in microhardness and corrosion resistance.


Author(s):  
Ömer Üstündağ ◽  
Nasim Bakir ◽  
Sergej Gook ◽  
Andrey Gumenyuk ◽  
Michael Rethmeier

AbstractIt is already known that the laser beam welding (LBW) or hybrid laser-arc welding (HLAW) processes are sensitive to manufacturing tolerances such as gaps and misalignment of the edges, especially at welding of thick-walled steels due to its narrow beam diameter. Therefore, the joining parts preferably have to be milled. The study deals with the influence of the edge quality, the gap and the misalignment of edges on the weld seam quality of hybrid laser-arc welded 20-mm-thick structural steel plates which were prepared by laser and plasma cutting. Single-pass welds were conducted in butt joint configuration. An AC magnet was used as a contactless backing. It was positioned under the workpiece during the welding process to prevent sagging. The profile of the edges and the gap between the workpieces were measured before welding by a profile scanner or a digital camera, respectively. With a laser beam power of just 13.7 kW, the single-pass welds could be performed. A gap bridgeability up to 1 mm at laser-cut and 2 mm at plasma-cut samples could be reached respectively. Furthermore, a misalignment of the edges up to 2 mm could be welded in a single pass. The new findings may eliminate the need for cost and time-consuming preparation of the edges.


Author(s):  
Wolfgang Lippmann ◽  
Marion Herrmann ◽  
Carmen Hille ◽  
Antonio Hurtado

Non-oxide ceramics, such as silicon carbide (SiC) and silicon nitride (Si3N4), have excellent properties that make the materials interesting for application also in the nuclear sector. Due to their exceptional resistance to high temperatures, aggressive and abrasive media as well as nuclear radiation, the materials seem to be particularly suitable for developments in such fields as high-temperature reactors ((V)HTR) and peripheral systems (e.g. for hydrogen production). To simplify and thus to enable the technical application of these high-tech ceramics, the Dresden University of Technology has developed a laser beam joining process. This opens up many possibilities, e.g., to encase HTR fuel elements (as well as spheres and composites) in SiC, to encapsulate highly radioactive waste in SiC or to build a highly efficient heat transformer using high-temperature energy from VHT reactors. The progress made in laser beam technology in the last few years is a major element that has contributed to the developments achieved to date. Research has been focused mainly on the following three areas: (1) optimization of the laser parameters in combination with the advancement of oxide brazing fillers, (2) transfer of the basic technology to other high-tech ceramics like oxide ceramics, and (3) application of the laser process to develop electrically conductive joints. The possibility to laser join also Al2O3 and ZrO2 ceramics has created the opportunity to produce full ceramic sensors for (V)HTR specific applications at low cost. This requires adaptation of laser technology to the special properties of oxide ceramics. These are markedly less resistant to thermally induced stress than non-oxide ceramics, placing high requirements on laser process control. Another peculiarity is the property of oxide ceramics to be partly transparent to the laser wavelengths emitted by diode lasers (808 nm and 940 nm), with the result that the ceramic material is not heated primarily at the surface but inside its volume. This produces joint seams inside ceramic components even without any excessive thermal stress. The R&D work has made it possible to produce novel sensors for the high-temperature range that are also highly resistant to aggressive media. It is considered a further advantage that this joining technology has no special requirements regarding the process atmosphere such as vacuum or inert gas, which ensures that the process lends itself well to automation.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3720 ◽  
Author(s):  
Tatevik Minasyan ◽  
Sofiya Aydinyan ◽  
Ehsan Toyserkani ◽  
Irina Hussainova

The laser power bed fusion approach has been successfully employed to manufacture Mo(Si,Al)2-based composites through the selective laser melting of a MoSi2-30 wt.% AlSi10Mg mixture for high-temperature structural applications. Composites were manufactured by leveraging the in situ reaction of the components during printing at 150–300 W laser power, 500–1000 mm·s−1 laser scanning speed, and 100–134 J·mm−3 volumetric energy density. Microcomputed tomography scans indicated a negligible induced porosity throughout the specimens. The fully dense Mo(Si1-x,Alx)2-based composites, with hardness exceeding 545 HV1 and low roughness for both the top (horizontal) and side (vertical) surfaces, demonstrated that laser-based additive manufacturing can be exploited to create unique structures containing hexagonal Mo(Si0.67Al0.33)2.


2003 ◽  
Vol 776 ◽  
Author(s):  
Tae-Woo Lee ◽  
Oleg Mitrofanov ◽  
Christopher A. White ◽  
Julia W. P. Hsu

AbstractWe use a two-photon laser-scanning microscope to fabricate two-dimensional (2D) photonic crystal structures in commercially available SU-8 polymer films, and successfully demonstrate making nanostructures beyond the diffraction limit with high aspect ratios. By varying the laser beam power, scanning speed, focal depth, line spacing and scanning angles, we obtain 2D photonic crystals with circular, elliptical, rectangular, or diamond-shape unit cells in a hexagonal or square lattice. An aspect ratio as high as 6.9 with 250 nm line width was achieved. In addition, we can controllably place defects of specific patterns, e.g. lines, dots, and Y-splitters, in the otherwise perfect photonic crystal. We also combine two-photon nanolithography with conventional UV photolithography to make 2D photonic crystals between waveguides. The combination of these two lithography methods was done on a single polymer film, suggesting potential for easy fabrication of complex photonic devices.


2014 ◽  
Vol 721 ◽  
pp. 678-681
Author(s):  
Wei Da Zhan ◽  
Dong Ya Xiao ◽  
Zi Qiang Hao ◽  
Hong Zuo Li

In near space optical communication, the laser beam energy affects communication link distance directly, also laser beam quality affects the laser energy density, modulation efficiency, bit error rate (BER) of communication and other parameters. In this paper we have presented an experiment system of space optical communication, of which the transmitting power is 1w, modulation rate is 500 Mbps and link distance is 8 to 10 kilometers. Then the effects of optical fiber collimator, electro-optic modulator, optical antenna and other units on beam power loss, beam diameter, divergence angle and other parameters are analyzed. Last we put forward the way of increasing the laser transmitting distance and the optimization measure of system key unit.


2011 ◽  
Vol 418-420 ◽  
pp. 1629-1634 ◽  
Author(s):  
Edson Costa Santos ◽  
Katsuyuki Kida ◽  
Justyna Rozwadowska ◽  
Takashi Honda ◽  
Hitonobu Koike ◽  
...  

The influence of gas nitriding on commercial pure titanium and Ti-6Al-4V (Ti64) alloy bearings by using a Q-sw laser on the wear loss during rolling contact fatigue is investigated. By optimizing the laser processing parameters, such as laser scanning speed, power and beam diameter thin TiN coats of 0.5 to 3 µm were produced. Non-coated and coated bearings made of pure Titanium and Ti-6Al-4V alloy were tested in equal conditions and it was found that the titanium nitride layers significantly improve the rolling contact fatigue performance of titanium components. For tests up to 106 cycles the wear loss of the coated samples was at least ten fold lower than that of the uncoated ones and for 7.76 x 106 cycles, the wear resistance improved almost 100-fold.


2021 ◽  
Vol 40 (1) ◽  
pp. 265-280
Author(s):  
Jyoti Menghani ◽  
Akash Vyas ◽  
Satish More ◽  
Christ Paul ◽  
Amar Patnaik

Abstract The purpose of the current investigation is to analyze the effect of the operating parameters of laser-assisted cladding process on clad height, clad depth, clad width and the percentage dilution in a cladding of AlFeCuCrCoNi high-entropy powder on SS-316 through CO2 laser and to optimize the cladding process parameters for optimum dilution. The experiments were designed by the full factorial method and analyzed by ANOVA. The analysis results indicate that dilution is most influenced by scanning speed followed by the powder feed rate. The outcomes of the single clad profile in terms of dilution, microhardness, composition and the microstructures produced in various cladding conditions are investigated briefly, and through which the optimum set of laser cladding operating parameters for maximum hardness of the clad material is determined. The optimum cladding conditions in the experimental range were obtained at 4 g/min powder feeding rate, 500 mm/min laser scanning speed and 1.1 kW laser beam power through multi-response optimization. Furthermore, the multi-track coating with 60% overlapping ratio was deposited using optimized parameters. The wear behavior of multi-track coating was determined using pin on disk wear apparatus with applied load of 20 N, sliding speed of 300 RPM and test duration of 15 min. The pin on disk wear test results indicates that the friction coefficient of SS-316 is larger than that of high-entropy alloy cladded SS-316. The wear resistivity of SS-316 improved by 40.35% after laser-assisted high-entropy alloy coating, which confirms that the laser cladding layer plays an essential role in enhancing the wear resistance capability of austenite steel.


2006 ◽  
Vol 2 (1) ◽  
pp. 13
Author(s):  
خليل عزيمة

Surface heat treatment of steel by using laser technology is the most developed method of hardening for machine elements and tools, where it formes on the surface structure with optimal properties. The structure depends on phase's transformation which occures in steel after laser treatment. The mechanism of mutual reaction between laser beam and steel is bind by kind of laser generation, wave length, power and scanning speed. The scanning speed of CW laser beam became the most important parameters of laser surface treatment. This paper concentrate on the study of the effect of laser scanning speed for steel surface on the depth of heating zone in three kind of carbon steel and the microhardness inside heat effected zone. It has been shown that both of microhardness and depth of hardening layer are decreased when scanning speed is increased. Also, it has been studied the relation between microhardness and the containment of carbon in steel.


Sign in / Sign up

Export Citation Format

Share Document