scholarly journals A simulation model of material particle trajectory by shifting of material by free fall

2019 ◽  
Vol 263 ◽  
pp. 01011
Author(s):  
Vieroslav Molnár ◽  
Mikuláš Šveda

The paper is aimed at the calculation of the throwing parabola of material particle and its graphical interpretation by changing input parameters selected according to predefined requirements. The aim is to compile a complex simulation model and comparison of the obtained simulation results on the model with analytical calculation. Simulation experiments on the model confirmed the known dependence of the change of throwing parabola by increased speed and retention of the radius of the staging drum. The simulation model was created in the program MSC Adams/View – a tool for easy construction and visualization of the model and convenient evaluation of the obtained results.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Nan Jia ◽  
Ruomei Wang ◽  
Mingliang Li ◽  
Yuhan Guan ◽  
Fan Zhou

Using computers to conduct human body simulation experiments (e.g., human sport simulation, human physiology simulation, and human clothing simulation) can benefit from both economic and security. However, the human simulation experiment usually requires vast computational resources due to the complex simulation model which combines complicated mathematical and physical principles. As a result, the simulation process is usually time-consuming and simulation efficiency is low. One solution to address the issue of simulation efficiency is to improve the computing performance of the server when the complexity of the simulation model is determined. In this paper, we proposed a concurrent optimization scheme for the server that runs simulation experiments. Specifically, we firstly propose the architecture of the server cluster for the human body simulation, and then we design the concurrent optimization scheme for the server cluster by using Nginx. The experiment results show that the proposed concurrent optimization scheme can make better use of server resources and improve the simulation efficiency in the case of human sport simulation.


2016 ◽  
Vol 8 (1) ◽  
pp. 18-45
Author(s):  
Klaus G. Troitzsch

This article discusses the question of whether significance tests on simulation results are meaningful at all. It is also argued that it is the effect size much more than the existence of the effect is what matters. It is the description of the distribution function of the stochastic process incorporated in the simulation model which is important. This is particularly when this distribution is far from normal, which is particularly often the case when the simulation model is nonlinear. To this end, this article uses three different agent-based models to demonstrate that the effects of input parameters on output metrics can often be made “statistically significant” on any desired level by increasing the number of runs, even for negligible effect sizes. The examples are also used to give hints as to how many runs are necessary to estimate effect sizes and how the input parameters determine output metrics.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1265 ◽  
Author(s):  
Johanna Geis-Schroer ◽  
Sebastian Hubschneider ◽  
Lukas Held ◽  
Frederik Gielnik ◽  
Michael Armbruster ◽  
...  

In this contribution, measurement data of phase, neutral, and ground currents from real low voltage (LV) feeders in Germany is presented and analyzed. The data obtained is used to review and evaluate common modeling approaches for LV systems. An alternative modeling approach for detailed cable and ground modeling, which allows for the consideration of typical German LV earthing conditions and asymmetrical cable design, is proposed. Further, analytical calculation methods for model parameters are described and compared to laboratory measurement results of real LV cables. The models are then evaluated in terms of parameter sensitivity and parameter relevance, focusing on the influence of conventionally performed simplifications, such as neglecting house junction cables, shunt admittances, or temperature dependencies. By comparing measurement data from a real LV feeder to simulation results, the proposed modeling approach is validated.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 622
Author(s):  
Dongpeng Zhang ◽  
Anjiang Cai ◽  
Yulong Zhao ◽  
Tengjiang Hu

The V-shaped electro-thermal MEMS actuator model, with the human error factor taken into account, is presented in this paper through the cascading ANSYS simulation model and the Fuzzy mathematics calculation model. The Fuzzy mathematics calculation model introduces the human error factor into the MEMS actuator model by using the BP neural network, which effectively reduces the error between ANSYS simulation results and experimental results to less than 1%. Meanwhile, the V-shaped electro-thermal MEMS actuator model, with the human error factor included, will become more accurate as the database of the V-shaped electro-thermal actuator model grows.


2013 ◽  
Vol 300-301 ◽  
pp. 32-35
Author(s):  
Xiao Wen Zeng ◽  
Cheng Zeng ◽  
Bing Han

In order to manage the complex simulation data management in the process of mechanical dynamics simulation, a new management model was presented which is Performance Simulation Model(PSM). The model was based on PDM product structure and the concepts and elements of PSM were defined in this paper. Furthermore, the functional framework of PSM was proposed which based on the hierarchical relationship of product structure and the data stream relationship of data structure matrix. Finally, PSM was applied on ship planetary reducer collaborative simulation platform. The result indicates that the simulation data in mechanical collaborative simulation are managed by PSM, and the problem of interaction between collaborative simulation and PDM is solved.


2011 ◽  
Vol 422 ◽  
pp. 176-183
Author(s):  
Gang Wang ◽  
Yu Wan Cen

To improve the regulating characteristics of impact energy, simplify structure of hydraulic hammer, a new pulse modulation hydraulic hammer is presented in the paper which can help regulate its impact frequency easily. The motion equations of the hydraulic hammer are established, its simulation model is obtained and the dynamic simulation is carried out on AMESim. The dynamics of high-speed ON/OFF valve is taken into account in the simulation model. The tendency of simulation results conforms to experimental results; it shows that the pulse modulation hydraulic hammer is feasible, and the hydraulic hammer model is reasonable. The time delay in high working frequency is also analyzed.


2014 ◽  
Vol 614 ◽  
pp. 12-15
Author(s):  
Yu Fei Liu ◽  
Xiu Chao Bai ◽  
Xin Li ◽  
Yong Liang Lei

The heating in the running-in process of wet friction clutch is the key to research in this kind of products. In this paper, based on the shifting clutch composed of metal and paper-based friction liner, using MATLAB/SIMULINK software, the simulation model of friction clutch and the analysis model of conducting heat were established. Thus, the corresponding relationships were obtained, which were the total friction power and clutch temperature variation with the time during the running-in process. According to the simulation results, the main influencing factors on temperature control of wet friction clutch were analyzed during running-in process, and the results could provide reference for reasonable temperature rise control for the clutch.


2011 ◽  
Vol 378-379 ◽  
pp. 663-667 ◽  
Author(s):  
Toempong Phetchakul ◽  
Wittaya Luanatikomkul ◽  
Chana Leepattarapongpan ◽  
E. Chaowicharat ◽  
Putapon Pengpad ◽  
...  

This paper presents the simulation model of Dual Magnetodiode and Dual Schottky Magnetodiode using Sentaurus TCAD to simulate the virtual structure of magneto device and apply Hall Effect to measure magnetic field response of the device. Firstly, we use the program to simulate the magnetodiode with p-type semiconductor and aluminum anode and measure electrical properties and magnetic field sensitivity. Simulation results show that sensitivity of Dual Schottky magnetodiode is higher than that of Dual magnetodiode.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3402
Author(s):  
Jan Slacik ◽  
Petr Mlynek ◽  
Martin Rusz ◽  
Petr Musil ◽  
Lukas Benesl ◽  
...  

The popularity of the Power Line Communication (PLC) system has decreased due to significant deficiencies in the technology itself, even though new wire installation is not required. In particular, regarding the request for high-speed throughput to fulfill smart-grid requirements, Broadband Power Line (BPLC) can be considered. This paper approaches PLC technology as an object of simulation experimentation in the Broadband Power Line Communication (BPLC) area. Several experimental measurements in a real environment are also given. This paper demonstrates these experimental simulation results as potential mechanisms for creating a complex simulation tool for various PLC technologies focusing on communication with end devices such as sensors and meters. The aim is to demonstrate the potential and limits of BPLC technology for implementation in Smart Grids or Smart Metering applications.


An experiment is described in which pairs of water drops of different size were caused to collide during free fall at a velocity equal to the difference of their terminal velocities in still air. The collision parameters of trajectory, drop size, and drop charge were controlled with precision, and impacts of a particular kind could be reproduced indefinitely. By using synchronized flash photography, well in excess of 30000 measurements were taken from more than 10000 frames of film of the resulting behaviour of the water-drop pairs. Data are discussed in terms of an impact parameter, X which defines the relative trajectory of the drops in the centre-of-mass frame, and three energy parameters e C , e R and e T which delineate the properties electrostatic energy, rotational energy, and total energy of the two-drop system before impact. Input parameters were confined to values appropriate to natural rainfall. After collision four basic types of rotation occurred, the particular kind of rotation depending upon X , e C , e R and e T . Measured rates of rotation were compared with that to be expected from a simple model of inelastic collision between solid spheres and showed a marked resemblance. Distributions of mass after collision were compared with a model based upon a bimodal Gaussian distribution to good effect. In addition, frequency distributions of the number of drop products resulting from a given collision were prepared showing the controlling influence of the impact parameter, X , and the effect of varying drop charge. Relations were also established between statistical values for the coalescence efficiency of a given drop pair and the input parameters; however, while all results were consistent and reproducible, the effect of drop charge could not be demonstrated by a simple model.


Sign in / Sign up

Export Citation Format

Share Document