scholarly journals Duration of a ”Brown-Like” Phenotype of White Adipose Tissue Induced by the β3 Agonist CL-316,243

Drug Research ◽  
2018 ◽  
Vol 69 (05) ◽  
pp. 265-270
Author(s):  
Wojciech Danysz ◽  
Kang Jinlai ◽  
Fugang Li

Abstract“Browning” i. e. the transformation of white adipose tissue into brown-like adipose tissue could induce efficient burning of excess fat reserves via induction of non-shivering thermogenesis. For example, activation of ß3 adrenergic receptors has been show to induce such changes, however, it is still not clear, how long after termination of such a treatment, beneficial effects might be maintained. To address this question, we treated rats s.c. for 2 weeks with the ß3 agonist CL-316,243 at 1 mg/kg and assessed interscapular brown fat and inguinal white fat pads weight, UCP-1 (a marker for the brown-like fat phenotype) using immunohistochemistry and H&E staining, at different intervals after treatment termination.One 1 day after the treatment cessation there was a decrease of inguinal white fat pad weight and increase of interscapular fat pad. This change vanished at 7 days for inguinal pad and at 14 days for interscapular pad. Histological analysis of interscapular pads showed increased UCP-1 staining and brown-like morphology in H&E staining slices at 1 day, but not other time points. In case of inguinal pad there were brown-like features in H&E slices at 1 day and less after 7 days, but absent at 14 days. UCP-1 staining was only detected 1 day after the treatment.In conclusion, the present results indicate that browning-like changes of white fat may be short lasting after treatment termination and could require maintenance treatment of inductor to achieve desired therapeutic effect. This might be a serious shortcoming of potential therapeutic use.

1985 ◽  
Vol 5 (2) ◽  
pp. 175-184 ◽  
Author(s):  
Christine M. Williams ◽  
Rodney Ellis

Male rats were treated with triiodothyronine in the drinking water for 12 days. In vitro rates of isoprenaline stimulated lipolysis were significantly greater in brown but not white adipose tissue. Rates of [14C]glucose incorporation into triacylglycerols were significantly reduced in BAT (brown adipose tissue) and WAT (white adipose tissue) under basal and isoprenaline stimulated conditions, in a second experiment, hyperthyroid animals showed impaired weight gain, despite increased food intake during t9 days' treatment. Energy expenditure on days 5 and 12, and BAT core temperature differences (TBAT – TCORE) on day 19, were significantly greater than in control animals. Epididymal white fat pad weight was reduced and interscapular brown fat pad weight increased by triiodothyronine treatment.


2020 ◽  
Vol 65 (3) ◽  
pp. 97-107
Author(s):  
Yuanyuan Huang ◽  
Hanlin Zhang ◽  
Meng Dong ◽  
Lei Zhang ◽  
Jun Lin ◽  
...  

White adipose tissue (WAT) browning may have beneficial effects for treating metabolic syndrome. miRNA are important regulators of the differentiation, development, and function of brown and beige adipocytes. Here, we found that the cold-inducible miRNA17-92 cluster is enriched in brown adipose tissue (BAT) compared with WAT. Overexpression of the miR17-92 cluster in C3H10T1/2 cells, a mouse mesenchymal stem cell line, enhanced the thermogenic capacity of adipocytes. Furthermore, we observed a significant reduction in adiposity in adipose tissue-specific miR17-92 cluster transgenic (TG) mice. This finding is partly explained by dramatic increases in white fat browning and energy expenditure. Interestingly, the miR17-92 cluster stimulated WAT browning without altering BAT activity in mice. In addition, when we removed the intrascapular BAT (iBAT), the TG mice could maintain their body temperature well under cold exposure. At the molecular level, we found that the miR17-92 cluster targets Rb1, a beige cell repressor in WAT. The present study reveals a critical role for the miR17-92 cluster in regulating WAT browning. These results may be helpful for better understanding the function of beige fat, which could compensate for the lack of BAT in humans, and may open new avenues for combatting metabolic syndrome.


1995 ◽  
Vol 268 (3) ◽  
pp. R744-R751 ◽  
Author(s):  
T. G. Youngstrom ◽  
T. J. Bartness

When Siberian hamsters are transferred from long summerlike days (LDs) to short winterlike days (SDs) they decrease their body weight, primarily as body fat. These SD-induced decreases in lipid stores are not uniform. Internally located white adipose tissue (WAT) pads are depleted preferentially of lipid, whereas the more externally located subcutaneous WAT pads are relatively spared. These data suggest a possible differential sympathetic neural control over catecholamine-induced lipolysis and that lipolytic rates are greater for internal vs. external WAT pads. Moreover, if these differential rates of lipolysis are due to differential sympathetic nervous system (SNS) drives on the pads, then fat pad-specific catecholaminergic innervation may exist. Therefore, we tested whether inguinal WAT (IWAT; an external pad) and epididymal WAT (EWAT; an internal pad) were innervated differentially. In addition, we tested whether norepinephrine (NE) turnover (TO) reflected the presumed greater SNS drive on EWAT vs. IWAT after SD exposure. Injections of fluorescent tract tracers [Fluoro-Gold or indocarbocyanine perchlorate (DiI)] demonstrated projections from the SNS ganglia T13-L3 to both fat pads. Retrograde labeling revealed a relatively separate pattern of distribution of labeled neurons in the ganglia projecting to each pad. In vivo anterograde transport of DiI resulted in labeling in both IWAT and EWAT that included staining around individual adipocytes and occasionally retrogradely labeled cells. The proportionately greater decrease in EWAT compared with IWAT mass after 5 wk of SD exposure was reflected in greater EWAT NE TO than found in their LD counterparts for this pad.(ABSTRACT TRUNCATED AT 250 WORDS)


2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Qishu Zhou ◽  
Chunyu Liang ◽  
Yafei Li ◽  
Yi Yan

Objective  To investigate the effect of one-time high-intensity intermittent exercise in white fat autophagy in obese rats and provide a theoretical basis of the molecular mechanism of exercise fat loss. Methods  Eighteen male 3-weeks-old rats were selected and divided into control group fed with normal diet (C), high-fat diet group fed with high fat diet (H). After 16 weeks, there were twelve obesity rats that divided into diet group (HS) and exercise group (HE). The other six control group rats of 19 weeks age were used as the standard (CS group). OE group did the high intensity intermittent exercise once. The CS group and the CS group were kept quietly. Three groups were taken subcutaneous white adipose tissue(S) and epididymal white adipose tissue (E) immediately after exercise. Mensurate the expression of LC3 gene in the tissue using the fluorescent quantitative PCR. Results 1. The expression of LC3 mRNA from white fat tissue was different to the tissues, which the expression of epididymal white adipose tissue of each group was higher than that in subcutaneous white adipose tissue (P <0.01). 2. Compared with CS group, the expression of epididymal white fat adipose tissue LC3 mRNA decreased (P<0.01) and the expression of the subcutaneous white adipose tissue increased from HS group (P <0.05). 3. Compared with OS group, the expression of epididymal white fat adipose tissue LC3 mRNA decreased (P<0.05) and the expression of subcutaneous white adipose tissue decreased from OS group. Conclusions The expression of LC3mRNA in epididymal white fat adipose tissue of rats was significantly higher than that of subcutaneous white fat. The changes of LC3mRNA expression of adipose tissue caused by high-fat diet have tissue differences. One-time high-intensity intermittent exercise can reduce the expression of LC3mRNA in fat tissue of obese rats. Its regulatory mechanism needs to be further studied.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3356 ◽  
Author(s):  
Weiyao Liao ◽  
Xiaohan Yin ◽  
Qingrong Li ◽  
Hongmin Zhang ◽  
Zihui Liu ◽  
...  

Promoting the browning of white fat may be a potential means of combating obesity. Therefore, in this study, we investigated the effect of resveratrol (RES) on the body weight and browning of white fat in high-fat diet (HFD)-induced obese mice and the potential associated mechanism in vivo. Eight-week-old male mice were randomized to receive different treatments: (1), chow without any additional treatment (chow); (2), chow plus 0.4% resveratrol (chow-RES); (3), HFD without any additional treatment (HFD); and (4), HFD plus 0.4% resveratrol (HFD-RES). After 4 weeks of feeding, additional 8-week-old male recipient mice were randomly allocated to the following 4 treatments: (5), HFD and received feces from chow-fed mice; (6), HFD and received feces from chow-RES-fed mice; (7), HFD and received feces from HFD-fed mice; and (8), HFD and received feces from HFD-RES-fed mice. RES treatment significantly inhibited increases in fat accumulation, promoted the browning of white adipose tissue (WAT) and alleviated gut microbiota dysbiosis in HFD-fed mice. Subsequent analyses showed that the gut microbiota remodeling induced by resveratrol had a positive role in WAT browning, and sirtuin-1 (Sirt1) signaling appears to be a key component of this process. Overall, the results show that RES may serve as a potential intervention to reduce obesity by alleviating dysbiosis of the gut microbiota.


1997 ◽  
Vol 321 (2) ◽  
pp. 451-456 ◽  
Author(s):  
Véronique ROUSSEAU ◽  
Dominique J. BECKER ◽  
Lumbe N. ONGEMBA ◽  
Jacques RAHIER ◽  
Jean-Claude HENQUIN ◽  
...  

The ob gene encodes leptin, a hormone which induces satiety and increases energy expenditure. The peroxisome proliferator-activated receptor γ2 isoform (PPARγ2) gene encodes a transcription factor which controls adipocyte differentiation and expression of fat-specific genes. We have studied the regulation of these two genes in white adipose tissue (WAT) during the sucklingŐweaning transition. Suckling rats ingest a high-fat diet (milk). Fat-pad weight barely varied during the last week of suckling. ob mRNA levels, which were very low in 15-day-old rats, rose ∼ 6-fold until weaning at 21 days. When the rats were weaned on to a standard (high-carbohydrate) laboratory chow, epididymal WAT enlarged ∼ 7-fold, and ob mRNA kept increasing progressively and doubled between 21 and 30 days. This evolution contrasted with that of fatty acid synthase (FAS) mRNA, which increased sharply, but only after weaning. To distinguish between the influence of developmental and nutritional factors on ob expression, a group of rats was weaned on to a high-fat diet. This prevented the rise in glycaemia and insulinaemia and the decrease in plasma non-esterified fatty acids which otherwise occurred at weaning. This also resulted in a slight (10Ő15%) decrease in food intake and body weight gain. Under this high-fat diet, the rise of ob mRNA in WAT was augmented (3.7-fold in 30- versus 21-day-old pups), whereas the normal rise in FAS mRNA levels was attenuated. Fat-pad weights and adipocyte cell size and number were roughly similar in high-carbohydrate- and high-fat-weaned pups. mRNA levels of PPARγ2, like those of ob, were low in the WAT of 15-day-old suckling pups, doubled at 21 days, and reached a maximum as soon as 23 days. This evolution further differed from that of ob mRNA in not being influenced by diet composition. In conclusion, ob expression markedly increases during the sucklingŐweaning transition, and this effect is accentuated by a high-fat diet. Qualitative nutritional changes in ob mRNA were correlated with neither acute changes in adipose-tissue mass, nor cell size/number, nor variations in insulinaemia. PPARγ2 also increased during suckling, but rapidly reached a plateau after weaning and no longer changed thereafter. Unlike ob, PPARγ2 was not influenced by the diet composition.


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 444 ◽  
Author(s):  
Ping He ◽  
Biyu Hou ◽  
Yanliang Li ◽  
Chunyang Xu ◽  
Peng Ma ◽  
...  

Background: White adipose tissue (WAT) browning confers beneficial effects on metabolic diseases. However, visceral adipose tissue (VAT) is not as susceptible to browning as subcutaneous adipose tissue (SAT). Aim: Interpreting the heterogeneity of VAT and SAT in brown remodeling and provide promising lipid targets to promote WAT browning. Methods: We first investigated the effects of β3-adrenergic stimulation by CL316,243 on systemic metabolism. Then, high-coverage targeted lipidomics approach with multiple reaction monitoring (MRM) was utilized to provide extensive detection of lipid metabolites in VAT and SAT. Results: CL316,243 notably ameliorated the systemic metabolism and induced brown remodeling of SAT but browning resistance of VAT. Comprehensive lipidomics analysis revealed browning heterogeneity of VAT and SAT with more dramatic alteration of lipid classes and species in VAT rather than SAT, though VAT is resistant to browning. Adrenergic stimulation differentially affected glycerides content in VAT and SAT and boosted the abundance of more glycerophospholipids species in VAT than in SAT. Besides, CL316,243 increased sphingolipids in VAT without changes in SAT, meanwhile, elevated cardiolipin species more prominently in VAT than in SAT. Conclusions: We demonstrated the browning heterogeneity of WAT and identified potential lipid biomarkers which may provide lipid targets for overcoming VAT browning resistance.


2001 ◽  
Vol 60 (3) ◽  
pp. 357-364 ◽  
Author(s):  
D. Vernon Rayner

Sympathetic stimulation has long been recognized to mobilise fatty acids from white adipose tissue. However, it is now apparent that adipose tissue is not only concerned with energy storage as fat, but is a major endocrine and secretory organ. This change has resulted from the identification of leptin as a hormone of energy balance secreted by white adipose tissue. The sympathetic system is a key regulator of leptin production in white fat. Sympathomimetic amines, cold exposure or fasting (which lead to sympathetic stimulation of white fat), decrease ob gene expression in the tissue and leptin production. On the other hand, sympathetic blockade often increases circulating leptin and ob gene expression, and it is postulated that the sympathetic system has a tonic inhibitory action on leptin synthesis. In rodents this action is through stimulation of b3-adrenoceptors. The adrenal medulla (as opposed to the direct sympathetic innervation) has been thought to play only a minor role in the catecholaminergic regulation of white adipose tissue. However, in rodents responses of the leptin system to adrenergic blockade vary with the method used. Changes in leptin and ob gene expression are considerably less using methods of blockade that only effect the terminal adrenergic innervation, rather than medullary secretions as well. Stimulation of the leptin system increases sympathetic activity and hence metabolic activity in many tissues. As well as leptin, other (but not all) secretions from white adipose tissue are subject to sympathetic regulation. In obesity the sympathetic sensitivity of adipose tissue is reduced and this factor may underlie the dysregulation of leptin production and other adipose tissue secretions.


2018 ◽  
Vol 19 (11) ◽  
pp. 3335 ◽  
Author(s):  
Masaki Kobayashi ◽  
Namiki Fujii ◽  
Takumi Narita ◽  
Yoshikazu Higami

Caloric restriction (CR) delays the onset of many age-related pathophysiological changes and extends lifespan. White adipose tissue (WAT) is not only a major tissue for energy storage, but also an endocrine tissue that secretes various adipokines. Recent reports have demonstrated that alterations in the characteristics of WAT can impact whole-body metabolism and lifespan. Hence, we hypothesized that functional alterations in WAT may play important roles in the beneficial effects of CR. Previously, using microarray analysis of WAT from CR rats, we found that CR enhances fatty acid (FA) biosynthesis, and identified sterol regulatory element-binding protein 1c (SREBP-1c), a master regulator of FA synthesis, as a mediator of CR. These findings were validated by showing that CR failed to upregulate factors involved in FA biosynthesis and to extend longevity in SREBP-1c knockout mice. Furthermore, we revealed that SREBP-1c is implicated in CR-associated mitochondrial activation through the upregulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of mitochondrial biogenesis. Notably, these CR-associated phenotypes were observed only in WAT. We conclude that CR induces SREBP-1c-dependent metabolic remodeling, including the enhancement of FA biosynthesis and mitochondrial activation, via PGC-1α in WAT, resulting in beneficial effects.


2001 ◽  
Vol 281 (5) ◽  
pp. R1499-R1505 ◽  
Author(s):  
Gregory E. Demas ◽  
Timothy J. Bartness

Seasonal adjustments in Siberian hamster adiposity are triggered by day length changes [i.e., short “winter-like” days (SDs) elicit body fat decreases vs. long “summer-like” days (LDs)]. These and other white adipose tissue (WAT) mass decreases traditionally have been ascribed to lipolysis triggered by sympathetically mediated, adrenal medullary released epinephrine; however, recent evidence suggests that direct sympathetic innervation of WAT also is important. Therefore, the contributions of WAT sympathetic innervation and adrenal medullary catecholamines to SD-induced decreases in adiposity were tested. Siberian hamsters were surgically bilaterally adrenal demedullated (ADMEDx) or sham ADMEDx, and all had one inguinal WAT (IWAT) pad sympathectomized via locally injected guanethidine, with the contralateral pad serving as a within-animal innervated control. One-half of the hamsters remained in LDs; the remainder was transferred to SDs. Guanethidine and ADMEDx abolished IWAT norepinephrine and adrenal epinephrine contents, respectively. Although sympathetic denervation or ADMEDx alone did not block SD-induced decreases in IWAT mass, their combination did. These results suggest that both adrenal catecholamines and the sympathetic innervation of WAT interact to decrease SD-induced decreased adiposity.


Sign in / Sign up

Export Citation Format

Share Document