Crosstalk in the Retinal Neurovascular Unit – Lessons for the Diabetic Retina

2012 ◽  
Vol 120 (04) ◽  
pp. 199-201 ◽  
Author(s):  
Y. Feng ◽  
S. Busch ◽  
N. Gretz ◽  
S. Hoffmann ◽  
H.-P. Hammes

AbstractDiabetic retinopathy shares important features with neurodegenerative retinal diseases, including loss of ganglion cells and retinal thinning. The impact on vasoregression and subsequent ischemia-driven changes such as macular edema and proliferative retinopathy are not established. Studies using adult neurodegenerative animal models such as the transgenic TGR(CMV-PKD2(1/703)HA) rat imply early activation of the innate immunity system and the complement system as well as microglia playing a role in the damage of the retinal neurovascular unit.

Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1579 ◽  
Author(s):  
Moaddey Alfarhan ◽  
Eissa Jafari ◽  
S. Priya Narayanan

Diabetic retinopathy (DR) is the leading cause of vision loss among working-age adults. Extensive evidences have documented that oxidative stress mediates a critical role in the pathogenesis of DR. Acrolein, a product of polyamines oxidation and lipid peroxidation, has been demonstrated to be involved in the pathogenesis of various human diseases. Acrolein’s harmful effects are mediated through multiple mechanisms, including DNA damage, inflammation, ROS formation, protein adduction, membrane disruption, endoplasmic reticulum stress, and mitochondrial dysfunction. Recent investigations have reported the involvement of acrolein in the pathogenesis of DR. These studies have shown a detrimental effect of acrolein on the retinal neurovascular unit under diabetic conditions. The current review summarizes the existing literature on the sources of acrolein, the impact of acrolein in the generation of oxidative damage in the diabetic retina, and the mechanisms of acrolein action in the pathogenesis of DR. The possible therapeutic interventions such as the use of polyamine oxidase inhibitors, agents with antioxidant properties, and acrolein scavengers to reduce acrolein toxicity are also discussed.


2020 ◽  
Vol 37 ◽  
Author(s):  
Cyril G. Eleftheriou ◽  
Elena Ivanova ◽  
Botir T. Sagdullaev

Abstract Diabetic retinopathy (DR) is a frequent complication of diabetes mellitus and an increasingly common cause of visual impairment. Blood vessel damage occurs as the disease progresses, leading to ischemia, neovascularization, blood–retina barrier (BRB) failure and eventual blindness. Although detection and treatment strategies have improved considerably over the past years, there is room for a better understanding of the pathophysiology of the diabetic retina. Indeed, it has been increasingly realized that DR is in fact a disease of the retina’s neurovascular unit (NVU), the multi-cellular framework underlying functional hyperemia, coupling neuronal computations to blood flow. The accumulating evidence reveals that both neurochemical (synapses) and electrical (gap junctions) means of communications between retinal cells are affected at the onset of hyperglycemia, warranting a global assessment of cellular interactions and their role in DR. This is further supported by the recent data showing down-regulation of connexin 43 gap junctions along the vascular relay from capillary to feeding arteriole as one of the earliest indicators of experimental DR, with rippling consequences to the anatomical and physiological integrity of the retina. Here, recent advancements in our knowledge of mechanisms controlling the retinal neurovascular unit will be assessed, along with their implications for future treatment and diagnosis of DR.


2021 ◽  
Vol 38 ◽  
Author(s):  
David A. Antonetti

Abstract Diabetic retinopathy remains a leading cause of blindness despite recent advance in therapies. Traditionally, this complication of diabetes was viewed predominantly as a microvascular disease but research has pointed to alterations in ganglion cells, glia, microglia, and photoreceptors as well, often occurring without obvious vascular damage. In neural tissue, the microvasculature and neural tissue form an intimate relationship with the neural tissue providing signaling cues for the vessels to form a distinct barrier that helps to maintain the proper neuronal environment for synaptic signaling. This relationship has been termed the neurovascular unit (NVU). Research is now focused on understanding the cellular and molecular basis of the neurovascular unit and how diabetes alters the normal cellular communications and disrupts the cellular environment contributing to loss of vision in diabetes.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3575
Author(s):  
Ana M. Mueller-Buehl ◽  
Torsten Buehner ◽  
Christiane Pfarrer ◽  
Leonie Deppe ◽  
Laura Peters ◽  
...  

Considering the fact that many retinal diseases are yet to be cured, the pathomechanisms of these multifactorial diseases need to be investigated in more detail. Among others, oxidative stress and hypoxia are pathomechanisms that take place in retinal diseases, such as glaucoma, age-related macular degeneration, or diabetic retinopathy. In consideration of these diseases, it is also evidenced that the immune system, including the complement system and its activation, plays an important role. Suitable models to investigate neuroretinal diseases are organ cultures of porcine retina. Based on an established model, the role of the complement system was studied after the induction of oxidative stress or hypoxia. Both stressors led to a loss of retinal ganglion cells (RGCs) accompanied by apoptosis. Hypoxia activated the complement system as noted by higher C3+ and MAC+ cell numbers. In this model, activation of the complement cascade occurred via the classical pathway and the number of C1q+ microglia was increased. In oxidative stressed retinas, the complement system had no consideration, but strong inflammation took place, with elevated TNF, IL6, and IL8 mRNA expression levels. Together, this study shows that hypoxia and oxidative stress induce different mechanisms in the porcine retina inducing either the immune response or an inflammation. Our findings support the thesis that the immune system is involved in the development of retinal diseases. Furthermore, this study is evidence that both approaches seem suitable models to investigate undergoing pathomechanisms of several neuroretinal diseases.


2021 ◽  
Vol 9 (5) ◽  
pp. 1062
Author(s):  
Chunye Zhang ◽  
Craig L. Franklin ◽  
Aaron C. Ericsson

The gut microbiome (GM), a complex community of bacteria, viruses, protozoa, and fungi located in the gut of humans and animals, plays significant roles in host health and disease. Animal models are widely used to investigate human diseases in biomedical research and the GM within animal models can change due to the impact of many factors, such as the vendor, husbandry, and environment. Notably, variations in GM can contribute to differences in disease model phenotypes, which can result in poor reproducibility in biomedical research. Variation in the gut microbiome can also impact the translatability of animal models. For example, standard lab mice have different pathogen exposure experiences when compared to wild or pet store mice. As humans have antigen experiences that are more similar to the latter, the use of lab mice with more simplified microbiomes may not yield optimally translatable data. Additionally, the literature describes many methods to manipulate the GM and differences between these methods can also result in differing interpretations of outcomes measures. In this review, we focus on the GM as a potential contributor to the poor reproducibility and translatability of mouse models of disease. First, we summarize the important role of GM in host disease and health through different gut–organ axes and the close association between GM and disease susceptibility through colonization resistance, immune response, and metabolic pathways. Then, we focus on the variation in the microbiome in mouse models of disease and address how this variation can potentially impact disease phenotypes and subsequently influence research reproducibility and translatability. We also discuss the variations between genetic substrains as potential factors that cause poor reproducibility via their effects on the microbiome. In addition, we discuss the utility of complex microbiomes in prospective studies and how manipulation of the GM through differing transfer methods can impact model phenotypes. Lastly, we emphasize the need to explore appropriate methods of GM characterization and manipulation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kolja Becker ◽  
Holger Klein ◽  
Eric Simon ◽  
Coralie Viollet ◽  
Christian Haslinger ◽  
...  

AbstractDiabetic Retinopathy (DR) is among the major global causes for vision loss. With the rise in diabetes prevalence, an increase in DR incidence is expected. Current understanding of both the molecular etiology and pathways involved in the initiation and progression of DR is limited. Via RNA-Sequencing, we analyzed mRNA and miRNA expression profiles of 80 human post-mortem retinal samples from 43 patients diagnosed with various stages of DR. We found differentially expressed transcripts to be predominantly associated with late stage DR and pathways such as hippo and gap junction signaling. A multivariate regression model identified transcripts with progressive changes throughout disease stages, which in turn displayed significant overlap with sphingolipid and cGMP–PKG signaling. Combined analysis of miRNA and mRNA expression further uncovered disease-relevant miRNA/mRNA associations as potential mechanisms of post-transcriptional regulation. Finally, integrating human retinal single cell RNA-Sequencing data revealed a continuous loss of retinal ganglion cells, and Müller cell mediated changes in histidine and β-alanine signaling. While previously considered primarily a vascular disease, attention in DR has shifted to additional mechanisms and cell-types. Our findings offer an unprecedented and unbiased insight into molecular pathways and cell-specific changes in the development of DR, and provide potential avenues for future therapeutic intervention.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 168
Author(s):  
Isabel Torres-Cuevas ◽  
Iván Millán ◽  
Miguel Asensi ◽  
Máximo Vento ◽  
Camille Oger ◽  
...  

The loss of redox homeostasis induced by hyperglycemia is an early sign and key factor in the development of diabetic retinopathy. Due to the high level of long-chain polyunsaturated fatty acids, diabetic retina is highly susceptible to lipid peroxidation, source of pathophysiological alterations in diabetic retinopathy. Previous studies have shown that pterostilbene, a natural antioxidant polyphenol, is an effective therapy against diabetic retinopathy development, although its protective effects on lipid peroxidation are not well known. Plasma, urine and retinas from diabetic rabbits, control and diabetic rabbits treated daily with pterostilbene were analyzed. Lipid peroxidation was evaluated through the determination of derivatives from arachidonic, adrenic and docosahexaenoic acids by ultra-performance liquid chromatography coupled with tandem mass spectrometry. Diabetes increased lipid peroxidation in retina, plasma and urine samples and pterostilbene treatment restored control values, showing its ability to prevent early and main alterations in the development of diabetic retinopathy. Through our study, we are able to propose the use of a derivative of adrenic acid, 17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF, for the first time, as a suitable biomarker of diabetic retinopathy in plasmas or urine.


2021 ◽  
Vol 38 ◽  
Author(s):  
Xin Li ◽  
Zi-Wei Yu ◽  
Hui-Yao Li ◽  
Yue Yuan ◽  
Xin-Yuan Gao ◽  
...  

Abstract Microglia, the main immune cell of the central nervous system (CNS), categorized into M1-like phenotype and M2-like phenotype, play important roles in phagocytosis, cell migration, antigen presentation, and cytokine production. As a part of CNS, retinal microglial cells (RMC) play an important role in retinal diseases. Diabetic retinopathy (DR) is one of the most common complications of diabetes. Recent studies have demonstrated that DR is not only a microvascular disease but also retinal neurodegeneration. RMC was regarded as a central role in neurodegeneration and neuroinflammation. Therefore, in this review, we will discuss RMC polarization and its possible regulatory factors in early DR, which will provide new targets and insights for early intervention of DR.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yuhong Fu ◽  
Ying Wang ◽  
Xinyuan Gao ◽  
Huiyao Li ◽  
Yue Yuan

Background. Diabetic retinopathy (DR) is a severe complication of diabetes mellitus. DR is considered as a neurovascular disease. Retinal ganglion cell (RGC) loss plays an important role in the vision function disorder of diabetic patients. Histone deacetylase3 (HDAC3) is closely related to injury repair and nerve regeneration. The correlation between HDAC3 and retinal ganglion cells in diabetic retinopathy is still unclear yet. Methods. To investigate the chronological sequence of the abnormalities of retinal ganglion cells in diabetic retinopathy, we choose 15 male db/db mice (aged 8 weeks, 12 weeks, 16 weeks, 18 weeks, and 25 weeks; each group had 3 mice) as diabetic groups and 3 male db/m mice (aged 8 weeks) as the control group. In this study, we examined the morphological and immunohistochemical changes of HDAC3, Caspase3, and LC3B in a sequential manner by characterizing the process of retinal ganglion cell variation. Results. Blood glucose levels and body weights of db/db mice were significantly higher than that of the control group, P<0.01. Compared with the control group, the number of retinal ganglion cells decreased with the duration of disease increasing. HDAC3 expression gradually increased in RGCs of db/db mice. Caspase3 expression gradually accelerated in RGCs of db/db mice. LC3B expression dynamically changed in RGCs of db/db mice. HDAC3 was positively correlated with Caspase3 expression (r=0.7424), P<0.01. HDAC3 was positively correlated with LC3B expression (r=0.7336), P<0.01. Discussion. We clarified the dynamic expression changes of HDAC3, Caspase3, and LC3B in retinal ganglion cells of db/db mice. Our results suggest the HDAC3 expression has a positive correlation with apoptosis and autophagy.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1137
Author(s):  
Irini Chatziralli ◽  
Anat Loewenstein

Background: Diabetic retinopathy (DR) is the leading cause of blindness in the working-age population. The purpose of this review is to gather the existing literature regarding the use of the approved anti-vascular endothelial growth (anti-VEGF) agents in the treatment of DR. Methods: A comprehensive literature review in PubMed engine search was performed for articles written in English language up to 1 July 2021, using the keywords “diabetic retinopathy”, “ranibizumab”, “aflibercept”, and “anti-VEGF”. Emphasis was given on pivotal trials and recent robust studies. Results: Intravitreal anti-VEGF agents have been found to significantly improve visual acuity and reduce retinal thickness in patients with diabetic macular edema (DME) in a long-term follow-up ranging from 1 to 5 years and are considered the standard-of-care in such patients. Regarding DR, intravitreal anti-VEGF agents provided ≥2-step improvement in DR severity on color fundus photography in about 30–35% of patients with NPDR at baseline, in the majority of clinical trials originally designed to evaluate the efficacy of intravitreal anti-VEGF agents in patients with DME. Protocol S and CLARITY study have firstly reported that intravitreal anti-VEGF agents are non-inferior to panretinal photocoagulation (PRP) in patients with proliferative DR (PDR). However, the use of new imaging modalities, such as optical coherence tomography-angiography and wide-field fluorescein angiography, reveals conflicting results about the impact of anti-VEGF agents on the regression of retinal non-perfusion in patients with DR. Furthermore, one should consider the high “loss to follow-up” rate and its devastating consequences especially in patients with PDR, when deciding to treat the latter with intravitreal anti-VEGF agents alone compared to PRP. In patients with PDR, combination of treatment of intravitreal anti-VEGF agents and PRP has been also supported. Moreover, in the specific case of vitreous hemorrhage or tractional retinal detachment as complications of PDR, intravitreal anti-VEGF agents have been found to be beneficial as an adjunct to pars plana vitrectomy (PPV), most commonly given 3–7 days before PPV, offering reduction in the recurrence of vitreous hemorrhage. Conclusions: There is no general consensus regarding the use of intravitreal anti-VEGF agents in patients with DR. Although anti-VEGF agents are the gold standard in the treatment of DME and seem to improve DR severity, challenges in their use exist and should be taken into account in the decision of treatment, based on an individualized approach.


Sign in / Sign up

Export Citation Format

Share Document