Stability of 0.5% Glucose-Containing Balanced Electrolyte Solutions for Patients on Ketogenic Diets: A Laboratory Study

2020 ◽  
Vol 51 (06) ◽  
pp. 397-400
Author(s):  
Sebastian Heiderich ◽  
Nils Dennhardt ◽  
Hans Hartmann ◽  
Gerhard Joseph Kluger ◽  
Robert Sümpelmann ◽  
...  

Abstract Purpose Ketogenic diets (KDs) are used to treat epilepsies resistant to pharmacotherapy or some inborn errors of metabolism. For prolonged anesthesia, use of balanced electrolyte solutions (BESs) supplemented with 0.5% glucose has been advocated to maintain ketosis while preventing hypoglycemia. Unfortunately, there is no BES containing 0.5% glucose available from pharmacies. In a laboratory study, we investigated the physical and chemical stability of different BES mixtures containing 0.5% glucose. Methods In total, six approaches were chosen to create a BES with 0.5% glucose: three different glucose-free BESs were supplemented with glucose. Additionally, commercially available BES containing 1% glucose was diluted with three different glucose-free BESs to obtain a solution containing 0.5% glucose. Turbidity, pH, electrical conductivity, and macroscopic appearance of these solutions were measured immediately, at 24 hours, and after 7 days, and were compared with the original BES. Results Turbidity, pH, and electrical conductivity, as well as macroscopic appearance did not exceed the changes of the controls. Conclusions No signs of incompatibility reactions could be observed in a 1-week time period. Our study supports the stability of the examined BES containing 0.5% glucose for prolonged anesthesia in patients on KD. Clinical studies are needed to evaluate if BES containing 0.5% glucose is superior in patients on KDs.

Author(s):  
Lena Lämmle ◽  
Matthias Ziegler

The Dark Triad of personality has been associated with aggression against others as a reaction to perceived provocations. However, previous work has also shown that such responsive aggression even occurs if it means harming oneself. The first of two laboratory studies aimed to investigate whether this relation between the Dark Triad and self-harming behavior also occurs in situations where no others are affected but self-harm is likely. The second laboratory study considered two different settings in a within-participants design in order to analyze the stability of self-harming behavior and to what extent the Dark Triad constructs influence this behavior. The sample for study 1 consisted of 151 students (45.7% female) with a mean age of 21.40 years (SD = 2.19); the sample for study 2 consisted of 251 students (76.0% female) with a mean age of 22.21 years (SD = 3.90). Aside from the Dark Triad’s common core, depending on how self-harm was triggered (ego-threat (mainly narcissism), being alone with one’s own thoughts (mainly psychopathy), or reward condition (mainly Machiavellianism)), the Dark Triad traits differed in their responsiveness but were stable over the last two conditions, thereby suggesting a vulnerable side of the Dark Triad.


2021 ◽  
pp. 0958305X2198988
Author(s):  
Nur Syakirah Rabiha Rosman ◽  
Noor Aniza Harun ◽  
Izwandy Idris ◽  
Wan Iryani Wan Ismail

The emergence of technology to produce nanoparticles (1 nm – 100 nm in size) has drawn significant researchers’ interests. Nanoparticles can boost the antimicrobial, catalytic, optical, and electrical conductivity properties, which cannot be achieved by their corresponding bulk. Among other noble metal nanoparticles, silver nanoparticles (AgNPs) have attained a special emphasis in the industry due to their superior physical, chemical, and biological properties, closely linked to their shapes, sizes, and morphologies. Proper knowledge of these NPs is essential to maximise the potential of biosynthesised AgNPs in various applications while mitigating risks to humans and the environment. This paper aims to critically review the global consumption of AgNPs and compare the AgNPs synthesis between conventional methods (physical and chemical) and current trend method (biological). Related work, advantages, and drawbacks are also highlighted. Pertinently, this review extensively discusses the current application of AgNPs in various fields. Lastly, the challenges and prospects of biosynthesised AgNPs, including application safety, oxidation, and stability, commercialisation, and sustainability of resources towards a green environment, were discussed.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 443
Author(s):  
Kunakorn Chumnum ◽  
Ekwipoo Kalkornsurapranee ◽  
Jobish Johns ◽  
Karnda Sengloyluan ◽  
Yeampon Nakaramontri

The self-healing composites were prepared from the combination of bromobutyl rubber (BIIR) and natural rubber (NR) blends filled with carbon nanotubes (CNT) and carbon black (CB). To reach the optimized self-healing propagation, the BIIR was modified with ionic liquid (IL) and butylimidazole (IM), and blended with NR using the ratios of 70:30 and 80:20 BIIR:NR. Physical and chemical modifications were confirmed from the mixing torque and attenuated total reflection-fourier transform infrared spectroscopy (ATR-FTIR). It was found that the BIIR/NR-CNTCB with IL and IM effectively improved the cure properties with enhanced tensile properties relative to pure BIIR/NR blends. For the healed composites, BIIR/NR-CNTCB-IM exhibited superior mechanical and electrical properties due to the existing ionic linkages in rubber matrix. For the abrasion resistances, puncture stress and electrical recyclability were examined to know the possibility of inner liner applications and Taber abrasion with dynamic mechanical properties were elucidated for tire tread applications. Based on the obtained Tg and Tan δ values, the composites are proposed for tire applications in the future with a simplified preparation procedure.


2003 ◽  
Vol 68 (7) ◽  
pp. 1233-1242 ◽  
Author(s):  
Orhan Turkoglu ◽  
Mustafa Soylak ◽  
Ibrahim Belenli

Chloro(phenyl)glyoxime, a vicinal dioxime, and its Ni(II), Cu(II) and Co(II) complexes were prepared. XRD patterns of the complexes point to similar crystal structures. IR and elemental analysis data revealed the 1:2 metal-ligand ratio in the complexes. The Co(II) complex is a dihydrate. Temperature dependence of electrical conductivity of the solid ligand and its complexes was measured in the temperature range 25-250 °C; it ranged between 10-14-10-6 Ω-1 cm-1 and increased with rising temperature. The activation energies were between 0.61-0.80 eV. The Co(II) complex has lower electric conductivity than the Ni(II) and Cu(II) complexes. This difference in the conductivity has been attributed to differences in the stability of the complexes.


2006 ◽  
Vol 111 ◽  
pp. 99-102 ◽  
Author(s):  
A.A. Ahmed ◽  
Faiz Mohammad

The films of polyaniline:polyethyleneterephthalate films were prepared by polymerizing aniline soaked in polyethyleneterephthalate films of different thicknesses. The films were characterized by FTIR as well as for their electrical properties. The electrical properties of the films were observed to be of good quality as almost all the films showed a great increase in their electrical conductivity from insulator to semiconductor region after doping with hydrochloric acid. All the films in their doped state follow the Arrhenius equation for the temperature dependence of electrical conductivity from 35 to 115oC. The thermooxidative stability was studied by thermogravimetry and differential thermal analysis. The stability in terms of dc electrical conductivity retention was also studied under ambient conditions by two slightly different techniques viz. isothermal and cyclic techniques. The dc electrical conductivity of the films was found to be stable below 90oC for all the films under ambient conditions.


1997 ◽  
Vol 9 (1) ◽  
pp. 43-45 ◽  
Author(s):  
U. Wand ◽  
G. Schwarz ◽  
E. Brüggemann ◽  
K. Bräuer

Lake Untersee is the largest freshwater lake in the interior of East Antarctica. It is a perennially ice-covered, max. 169 m deep, ultra-oligotrophic lake. In contrast to earlier studies, we found clear evidence for physical and chemical stratification in the summer of 1991–92. However, the stratification was restricted to a trough, c. 500 m wide and up to 105 m deep, in the south-western part of the lake. There, the water body was distinctly stratified as indicated by sharp vertical gradients of temperature, pH, dissolved oxygen, and electrical conductivity. The water column was anoxic below 80 m. The chemical stratification is also indicated by changes of ionic ratios. Moreover, there was some evidence for methanogenesis and bacterial sulphate reduction in Lake Untersee.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 136
Author(s):  
Solomon O. Giwa ◽  
Mohsen Sharifpur ◽  
Mohammad H. Ahmadi ◽  
S. M. Sohel Murshed ◽  
Josua P. Meyer

The superiority of nanofluid over conventional working fluid has been well researched and proven. Newest on the horizon is the hybrid nanofluid currently being examined due to its improved thermal properties. This paper examined the viscosity and electrical conductivity of deionized water (DIW)-based multiwalled carbon nanotube (MWCNT)-Fe2O3 (20:80) nanofluids at temperatures and volume concentrations ranging from 15 °C to 55 °C and 0.1–1.5%, respectively. The morphology of the suspended hybrid nanofluids was characterized using a transmission electron microscope, and the stability was monitored using visual inspection, UV–visible, and viscosity-checking techniques. With the aid of a viscometer and electrical conductivity meter, the viscosity and electrical conductivity of the hybrid nanofluids were determined, respectively. The MWCNT-Fe2O3/DIW nanofluids were found to be stable and well suspended. Both the electrical conductivity and viscosity of the hybrid nanofluids were augmented with respect to increasing volume concentration. In contrast, the temperature rise was noticed to diminish the viscosity of the nanofluids, but it enhanced electrical conductivity. Maximum increments of 35.7% and 1676.4% were obtained for the viscosity and electrical conductivity of the hybrid nanofluids, respectively, when compared with the base fluid. The obtained results were observed to agree with previous studies in the literature. After fitting the obtained experimental data, high accuracy was achieved with the formulated correlations for estimating the electrical conductivity and viscosity. The examined hybrid nanofluid was noticed to possess a lesser viscosity in comparison with the mono-particle nanofluid of Fe2O3/water, which was good for engineering applications as the pumping power would be reduced.


2021 ◽  
Vol 901 ◽  
pp. 117-122
Author(s):  
Netnapa Ontao ◽  
Sirivan Athikomkulchai ◽  
Sarin Tadtong ◽  
Phuriwat Leesawat ◽  
Chuda Chittasupho

Ocimum gratissimum L. leaf oil exhibited many pharmacological properties. This study aimed to formulate and evaluate the physical and chemical stability of O.gratissimum leaf oil nanoemulsion. O.gratissimum leaf oil was extracted by hydrodistillation. The major component of the essential oil eugenol, was analyzed by UV-Vis spectrophotometry. Nanoemulsions of O.gratissimum leaf oil were formulated using polysorbate 80, hyaluronic acid, poloxamer 188, and deionized water by phase inversion composition method. The hydrodynamic diameter, polydispersity index, and zeta potential value of O.gratissimum leaf oil nanoemulsion was evaluated by a dynamic light scattering technique. The %remaining of eugenol in the nanoemulsion was analyzed by UV-Vis spectrophotometry. The essential oil extracted from of O. gratissimum leaf oil was a clear, pale yellow color. The %yield of the essential oil was 0.15 ± 0.03% v/w. The size of the nanoemulsion was less than 106 nm. The polydispersity index of the nanoemulsion was ranging from 0.303 - 0.586 and the zeta potential value of the nanoemulsion was closely to zero, depending on the formulation component. O. gratissimum leaf oil at concentrations ranging from 0.002 - 0.012% v/v contained 35 - 41% of eugenol. The size of nanoemulsion was significantly decreased after storage at 4 °C, while significantly increased upon storage at 45 °C. The size of nanoemulsion stored at 30 °C did not significantly change. The %remaining of eugenol in the nanoemulsion was more than 90% after storage at 4 °C and 30 °C for 28 days. The percentage of eugenol remaining in the nanoemulsion stored at 45 °C was more than 85 - 90%, suggesting that the temperature affected the stability of eugenol in the nanoemulsion.


2019 ◽  
Vol 35 (6) ◽  
Author(s):  
Heli Heros Teodoro de Assunção ◽  
Saulo Felipe Brockes Campos ◽  
Luciana Alves Sousa ◽  
Ernane Miranda Lemes ◽  
Cesar Henrique Souza Zandonadi ◽  
...  

The frequent tank mixing of phytosanitary products, adjuvants, and foliar fertilizers highlights the lack of information which sustains decisions about what products can be mixed for spray application. Thus, the aim of this study was to evaluate the physical and chemical characteristics of fungicides, herbicides, and insecticides in combination with some adjuvants on the Brazilian market. The experimental design was completely randomized and spray mixes of the phytosanitary products: fungicide (azoxystrobin+benzovindiflupir), herbicide (diamônio salt of N-(phosponomethyl)) or insecticide (fenpropathrin) were evaluated in combination with adjuvants (mineral oil base, foliar fertilizer or lecithin + propionic acid), and in two application rates (95 and 52 L ha-1); all with four replications. Surface tension, electrical conductivity, pH, dynamic viscosity and density of spray mixes were evaluated. The adjuvants presented characteristics capable of significantly altering the physicochemical properties of the phytosanitary spray mixes, and thus, alter the biological effectiveness and efficiency of the spray applications. However, its effects are also dependent on the phytosanitary product added to the spray mix, which makes general recommendations a difficult task. The greatest pH reduction, as well as the greatest increase in electrical conductivity, were caused by the adjuvant lecithin + propionic acid. All phytosanitary products and adjuvants studied, associated or not, resulted in a reduction in the surface tension of the spray mix in relation to water. The magnitude of change of density and dynamic viscosity promoted by adjuvants was lower than the other characteristics evaluated.


Sign in / Sign up

Export Citation Format

Share Document