A simple transport model for submicron semiconductor device analysis

1996 ◽  
Vol 80 (5) ◽  
pp. 2904-2907 ◽  
Author(s):  
J. O. Bark ◽  
G. Gildenblat
VLSI Design ◽  
1998 ◽  
Vol 8 (1-4) ◽  
pp. 381-385 ◽  
Author(s):  
Alfredo J. Piazza ◽  
Can E. Korman

Numerical simulation results of noise due to current fluctuations along an n+−n−n+ submicron structure are presented. The mathematical framework is based on the interpretation of the equations describing electron transport in the semiclassical transport model as stochastic differential equations (SDE). According to this formalism the key computations for the spectral density describing the noise process are reduced to a special initial value problem for the Boltzmann transport equation (BTE). The algorithm employed in the computation of the space dependent noise autocovariance function involves two main processes: the stationary self-consistent solution of the Boltzmann and Poisson equations, and a transient solution of the BTE with special initial conditions. The solution method for the BTE is based on the Legendre polynomial method. Noise due to acoustic and optical scattering and the effects of nonparabolicity are considered in the physical model.


2021 ◽  
Author(s):  
Xin-Miao Zhu ◽  
Min Cui ◽  
Yu Wang ◽  
Tian-Jing Yu ◽  
Jin-Xiang Deng ◽  
...  

Abstract Based on the transport equation of the semiconductor device model for 0.524 eV GeSn alloy and the experimental parameters of the material, thermal-electricity conversion performance governed by GeSn diode has been systematically studied in its normal and inverted structure. For the normal p+/n (n+/p) structure, it is demonstrated here that an optimal base doping N d(a) = 3 (7)×1018 cm-3 is observed, and the superior p+/n structure can reach the higher performance. To reduce material consumption, an economical active layer can be comprised of 100-300 nm emitter and 3-6 μm base to attain comparable performance as that for the optimal configuration. The results can offer many useful guidelines for the fabrication of economical GeSn thermophotovoltaic devices.


2005 ◽  
Vol 128 (7) ◽  
pp. 638-647 ◽  
Author(s):  
S. Sinha ◽  
E. Pop ◽  
R. W. Dutton ◽  
K. E. Goodson

Intense electron-phonon scattering near the peak electric field in a semiconductor device results in nanometer-scale phonon hotspots. Past studies have argued that ballistic phonon transport near such hotspots serves to restrict heat conduction. We reexamine this assertion by developing a new phonon transport model. In a departure from previous studies, we treat isotropic dispersion in all phonon branches and include a phonon emission spectrum from independent Monte Carlo simulations of electron-phonon scattering. We cast the model in terms of a non-equilibrium phonon distribution function and compare predictions from this model with data for ballistic transport in silicon. The solution to the steady-state transport equations for bulk silicon transistors shows that energy stagnation at the hotspot results in an excess equivalent temperature rise of about 13% in a 90nm gate-length device. Longitudinal optical phonons with non-zero group velocities dominate transport. We find that the resistance associated with ballistic transport does not overwhelm that from the package unless the peak power density approaches 50W∕μm3. A transient calculation shows negligible phonon accumulation and retardation between successive logic states. This work highlights and reduces the knowledge gaps in the electro-thermal simulation of transistors.


Author(s):  
Karren L. More

Beta-SiC is an ideal candidate material for use in semiconductor device applications. Currently, monocrystalline β-SiC thin films are epitaxially grown on {100} Si substrates by chemical vapor deposition (CVD). These films, however, contain a high density of defects such as stacking faults, microtwins, and antiphase boundaries (APBs) as a result of the 20% lattice mismatch across the growth interface and an 8% difference in thermal expansion coefficients between Si and SiC. An ideal substrate material for the growth of β-SiC is α-SiC. Unfortunately, high purity, bulk α-SiC single crystals are very difficult to grow. The major source of SiC suitable for use as a substrate material is the random growth of {0001} 6H α-SiC crystals in an Acheson furnace used to make SiC grit for abrasive applications. To prepare clean, atomically smooth surfaces, the substrates are oxidized at 1473 K in flowing 02 for 1.5 h which removes ∽50 nm of the as-grown surface. The natural {0001} surface can terminate as either a Si (0001) layer or as a C (0001) layer.


Author(s):  
S.F. Corcoran

Over the past decade secondary ion mass spectrometry (SIMS) has played an increasingly important role in the characterization of electronic materials and devices. The ability of SIMS to provide part per million detection sensitivity for most elements while maintaining excellent depth resolution has made this technique indispensable in the semiconductor industry. Today SIMS is used extensively in the characterization of dopant profiles, thin film analysis, and trace analysis in bulk materials. The SIMS technique also lends itself to 2-D and 3-D imaging via either the use of stigmatic ion optics or small diameter primary beams.By far the most common application of SIMS is the determination of the depth distribution of dopants (B, As, P) intentionally introduced into semiconductor materials via ion implantation or epitaxial growth. Such measurements are critical since the dopant concentration and depth distribution can seriously affect the performance of a semiconductor device. In a typical depth profile analysis, keV ion sputtering is used to remove successive layers the sample.


Author(s):  
J.L. Batstone

The development of growth techniques such as metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy during the last fifteen years has resulted in the growth of high quality epitaxial semiconductor thin films for the semiconductor device industry. The III-V and II-VI semiconductors exhibit a wide range of fundamental band gap energies, enabling the fabrication of sophisticated optoelectronic devices such as lasers and electroluminescent displays. However, the radiative efficiency of such devices is strongly affected by the presence of optically and electrically active defects within the epitaxial layer; thus an understanding of factors influencing the defect densities is required.Extended defects such as dislocations, twins, stacking faults and grain boundaries can occur during epitaxial growth to relieve the misfit strain that builds up. Such defects can nucleate either at surfaces or thin film/substrate interfaces and the growth and nucleation events can be determined by in situ transmission electron microscopy (TEM).


Sign in / Sign up

Export Citation Format

Share Document