Analysis of chemical profile and antibacterial activity of secondary metabolites of endophytic fungi from Annona squamosa L. from Timor Island-Eastern Indonesia

2020 ◽  
Author(s):  
Antonius R. B. Ola
2021 ◽  
Vol 6 (3) ◽  
pp. 189-195
Author(s):  
Hary Widjajanti ◽  
Christina Vivid Handayani ◽  
Elisa Nurnawati

The antibiotic resistance of phatogenic bacteria has become a serious health problem and has encouraged the search for novel and effective antimicrobial metabolites. Meanwhile, endophytic fungi have great potential as a natural source for antimicrobial agents. The endophytic fungi that live in plant tissue produces secondary metabolites which potentially act as an antibacterial compound. The isolation of fungi for antibacterial sources reduces the large amount of plant as a source of antibacterial agents. Hence, this study aims to obtain endophytic fungi isolates from Paederia foetida L. that are capable of producing secondary metabolites as antibacterial, carry out in vitro tests to verify the antibacterial properties of secondary metabolites of the Paederia foetida L. endophytic fungi, and identify the potential of Paederia foetida L. endophytic fungi in producing antibacterial compounds. The antibacterial activity was tested against Escherichia coli ATCC8739 and Staphylococcus aureus ATCC6538 while seven isolates of endophytic fungi that potentially produced antibacterial were obtained from Sembukan (P. foetida L.). The results showed that antibacterial activities of SL1, SL4 and SL6 secondary metabolites against S. aureus ATCC6538 and E. coli ATCC8739 were moderate to strong activities. Furthermore, the Minimum Inhibition Concentration (MIC) of secondary metabolites extract of SL1 against S. aureus ATCC6538 value was 250 ????g/mL while the values of MIC extract of SL4 against S. aureus ATCC6538 and E. coli ATCC8739 were 125 ????g/mL and 250 ????g/mL respectively and MIC extract of SL6 against E. coli ATCC8739 value was 125 ????g/mL. The secondary metabolites extract of SL1 isolate were alkaloid and tannin, SL4 were phenolic and alkaloid while SL6 isolate were alkaloid and terpenoid. Hence, endophytic fungi SL1 isolate was identified as Fusarium sp., SL4 as Dematophora sp., and SL6 isolate as Acremonium sp.


Author(s):  
Shirly Kumala ◽  
Ng Vini Aprilia ◽  
Partomuan Simanjuntak

Objective: Colletotrichium capsici endophytic fungi isolated from Jamblang plant (Eugenia cumini  L).  The secondary metabolites of this plant has the potent antibacterial efficacy  as well as diarrheal and anti-diabetic. This research focussed on isolation of the endophytic microbes from branches of Jamblang plants and their secondary metabolites.Methods: Isolation of endophytes were performed in PDA(potato dextrose agar) using direct seed plant. Endophytic fungi isolates with strongest antimicrobial activity against the bacteria Staphylococcus aureus, Escherichia coli were fermented in Potato Dextrose Yeast (PDY) to produce  large scale of the metabolites.  Supernatant was extracted with ethyl acetate solvent. Ethyl acetate extract fractionated by column chromatography (SiO3, n-hexane- ethyl acetate = 50:1 ~ 1:1) and obtained three fractions. Further, agar diffusion method was performed to assess their anti-microbial activity.Results:  Antibacterial  test  results  indicated that fraction III had  the antibacterial  activity Staphylococcus aureus with  inhibition zone diameter  of 10.7 mm but no observed antibacterial activity against Escherichia coli.  Furthermore, identification  by GC-MS showed that compounds present in fraction III was mainly fatty acid and phenolic compounds.Conclusion:  In conclusion, secondary metabolites isolated from Jamblang plants branches contained predominantly fatty acid and phenol related compounds that could be responsible for its potent anti microbial activity. Keywords : Endophytic fungi, Jamblang (Eugenia cumini L.), antimicrobial activity


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Paola Cynthia Emoh Demeni ◽  
Patrick Hervé Diboue Betote ◽  
Christelle Wayoue Kom ◽  
Eric Ngalani Tchamgoue ◽  
Esther Del Florence Ndedi Moni ◽  
...  

This study evaluated the antibacterial efficacy of methanolic extracts of isolated endophytic fungi from stem barks and leaves of Alstonia boonei De Wild and Greenwayodendron suaveolens (Engl. and Diels) Verdc. subsp. Suaveolens against Klebsiella pneumoniae ATCC 43816, Haemophilus influenzae ATCC 49247, Pseudomonas aeruginosa ATCC 27853, and Escherichia coli ATCC 35218, responsible for causing pneumonia. The endophytic fungi were isolated and characterized in the Potato Dextrose Agar (PDA), Sabouraud Dextrose Agar (SDA), and Czapek Dox Agar (CDA) media. The fungi and their methanolic extracts were tested for in vitro antibacterial potential by antagonistic assay for endophytic fungi against bacterial pathogens and microdilution method. The phytochemical screening of extracts was carried out according to the colorimetric and precipitation methods to reveal the presence of secondary metabolites. The results showed that 24 macroscopically and microscopically distinct endophytic fungi were isolated, identified, and stored. These endophytic fungi possessed antibacterial activity against the selected bacterial strains with inhibition zones ranging from 7.00 to 25.00 mm. The endophytic fungi GS15 and AB24 have presented the inhibitions zones of 20.33 mm and 25.00 mm, respectively, and these were better than the ones obtained for Levofloxacin®. The endophytes with inhibition zones greater than 10 mm were used for extraction of their secondary metabolites. The endophytic fungi extracts showed antibacterial activity with the minimum inhibitory concentrations (MICs) ranging from 6.25 × 10−4 to 2 × 10−2 g/L and the minimum bactericidal concentrations (MBCs) ranging from 2.5 × 10−3 to 2 × 10−2 g/L. The endophytic fungi GS15 extract was the most effective extract; it showed bactericidal effects on the tested bacterial strains. The phytochemical screening of the extracts revealed the presence of secondary metabolites classes, responsible for causing the obtained antibacterial activity. Thus, the endophytic fungi methanolic extracts from A. boonei and G. suaveolens have the potential to inhibit the growth of bacteria responsible for nosocomial pneumonia.


2019 ◽  
Vol 5 (2) ◽  
Author(s):  
Angga Puja Asiandu ◽  
Hary Widjajanti ◽  
Elisa Nurnawati

Endophytic fungi are fungi which live inside the host plant tissue and have been undergone a horizontal gene transfer process. Endophytic fungi are able to synthesize the same bioactive compounds which synthesized by their host plants. The host plant used in this research was dragon’s scales fern (Pyrrosia piloselloides (L.) M.G. Price). Dragon’s scales fern produces various of bioactive compounds which used as antibacterial agents such as polyphenols. This research was aimed to obtain endophytic fungi isolates from trophophyll fronds and sporophyll fronds of dragon’s scales fern, to determine the antibacterial activity of the secondary metabolite extracts of endophytic fungi, to determine the Minimum Inhibitory Concentration (MIC), to determine the characteristics of the endophytic fungi isolates which potentially as antibacterial source. Based on the research, 13 endophytic fungi isolates were obtained from dragon’s scales fern fronds consist of 5 isolates from trophophyll fronds and 8 isolates from sporophyll fronds. The antibacterial activity test showed that the extract of secondary metabolites of the isolate DTP2 had the highest inhibition zone diameter against E.coli 14.82 ± 4.05 mm, DTP4 against S.aureus 8.80 ± 0.03 mm and DSP4 against S.dysentriae 10.15 ± 0.36 mm. MIC of ethyl acetate extracts of secondary metabolites of isolate DTP2 against E.coli was 125 µg/mL, DTP4 against S.aureus was 125 µg/mL and DSP4 against S.dysentriae was 31.25 µg/mL. The endophytic fungi isolate DTP2 identified as Aureobasidium melanogenum, DTP4 identified as Penicillium alliisativi and DSP4 identified as Aspergillus flocculosus.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Nabila Ukhty

Endophytic fungi is the one of the types microbes that lives in the plant tissue. The fungus can produce secondary metabolites potential as a source of antimicrobial and anticancer. The objectives of this study was to the exploration of new antibacterial compounds derived from marine endophytic fungi isolated from coastal plant terong pungo (Solanum sp.). Eight isolates of marine endophytic fungi with different morphology were collected. Endophytic fungus TPL2 was the selected isolate based on antagonism test. The growth curve showed the stationary phase of isolate TPL was on the 9th day to 12th day. Crude extract of endophytic fungi TPL2 showed the antibacterial activity against Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa with diameter of inhibition zone 4 mm, 6 mm, and 6 mm, respectively for 2 mg extract/well.


BioScience ◽  
2017 ◽  
Vol 1 (1) ◽  
pp. 37
Author(s):  
Lydia Yohana Safitri

Endophytic fungi are microorganisms found in healthy plant tissue but not pathogenic to plants, and produce secondary metabolites same host plant. Secondary metabolites can be used as a drug. The possibility of endophytic fungi are found in bamboo, because bamboo betung (Dendrocalamus asper Backer.) Has high potential as a drug, because it contains flavonoids, and phenolic coumarin. These compounds are secondary metabolites that produce antimicrobial substances that are used in the pharmaceutical field and are found in plant tissue. To avoid excessive use of medicinal plants that could lead to the extinction of these plants, then used the role of endophytic fungi are capable of producing secondary metabolites to the fullest. In addition, the endophytic fungus in plant tissue can be more than one type of fungal endophyte that the higher production of secondary metabolites. This study aims to determine the types of isolates of endophytic fungi on the leaves of Dendrocalamus asper and know the antibacterial potency against bacterial endophyte fungus Staphylococcus aureus. The results showed that there were thirteen isolates of endophytic fungi were isolated from the leaves of Dendrocalamus asper. Ten isolates of endophytic fungi have potential as an antibacterial against S. aureus and three isolates of endophytic fungi did not show any antibacterial activity. Key Word: Endophytic fungi, Secondary metabolites, antibacterial activity.


2012 ◽  
Vol 6 (1) ◽  
pp. 23-29 ◽  
Author(s):  
PRASETYAWAN YUNIANTO ◽  
SYOFI ROSMALAWATI ◽  
INDRA RACHMAWATI ◽  
WAHYUDI PRIYONO SUWARSO ◽  
WAHONO SUMARYONO

2020 ◽  
Vol 10 (3-s) ◽  
pp. 47-51
Author(s):  
Yasmina Ouzid ◽  
Siliya Karaoui ◽  
Noria Smail Saadoun ◽  
Karim Houali

Medicinal plants are an inexhaustible source of molecules. They are colonized by mycoendophytes, fungi living in their tissues without apparent symptoms. These fungi can provide secondary metabolites with biological activities. It is with this in mind that we are interested in a spontaneous plant from the dayas region (Laghouat, Algeria): Peganum harmala or Harmel, a toxic medicinal plant belonging to the family Zygophyllaceae. Our study consists in highlighting the antibacterial activity of four kinds of mycoendophytes: Cladosporium, Alternaria, Aspergillus and Penicillium isolated from the leaves of this plant. The antibacterial activity is evaluated by the technique of the double disk diffusion on agar with respect to some Gram-positive bacterial strains. We have adopted two protocols for this purpose. For the first, the mycelia of all the mushrooms are deposited in the same petri dish. For the second, a single disc of the mycelium of a single species is deposited per box. The results obtained show a difference in the sensitivity of the bacterial strains to the bioactive substances of the mycoendophytes studied. The Alternaria genus showed the most significant activity. ANOVA performed between the mean diameters of the mycoendophyte inhibition zones and the antibiotic test disc: Chloramphenicol showed a highly significant difference between these two measurements. The Newman-Keuls test revealed a difference in the susceptibility of bacterial strains to the secondary metabolites of fungus mycoendophytes of Peganum harmala according to the two protocols used. The antibacterial effect is related to interactions between endophytic fungi and their host plant.


2021 ◽  
Vol 22 (10) ◽  
Author(s):  
Syarifah Syarifah ◽  
Elfita Elfita ◽  
HARY WIDJAJANTI ◽  
ARUM SETIAWAN ◽  
ALFIA R. KURNIAWATI

Abstract. Syarifah, Elfita, Widjajanti H, Setiawan A, Kurniawati AR. 2021. Diversity of endophytic fungi from the root bark of Syzygium zeylanicum, and the antibacterial activity of fungal extracts, and secondary metabolite. Biodiversitas 22: 4572-4582. The decoction of the root bark of Syzygium zeylanicum has been used as traditional medicine, such as for treating pathogenic bacterial infections. Endophytic fungi that live in medicinal plant tissues have a high species diversity and biological activities correlate with their host. Therefore, this study aimed to explore the diversity of endophytic fungi from the root bark of S. zeylanicum and to determine the antibacterial activity of endophytic fungi and their secondary metabolites. In this study, we isolate and identify the endophytic fungi from the root bark of S. zeylanicum, continued by screening their antibacterial activity against two Gram-negative bacteria (Escherichia coli InaCCB5 and Salmonella thypi ATCC1048 and two Gram-positive bacteria (Staphylococcus aureus InaCCB4 and Bacillus subtilis InaCCB1204) by the Kirby-Bauer method. The fungal extract with the highest antibacterial activity proceeded with the isolation and determination of the structure of their bioactive compounds. The isolates were morphologically identified. Isolates that showed strong antibacterial activity were identified by molecular identification. Isolation of bioactive compounds was carried out by chromatographic techniques and the determination of the structure of pure chemical compounds was performed by the spectroscopic analysis. In total, there were 8 isolates of endophytic fungi were obtained from the root bark of S. zeylanicum, namely SZR1 – SZR8. SZR2 isolate has the highest antibacterial activity. Molecular identification through phylogenetic analysis showed that SZR2 isolate had high similarity with Penicillium brefeldianum. Isolation of bioactive compounds from SZR2 produced compound 1 in the form of light yellow crystals which showed strong antibacterial activity against S. typhi, E. coli, and B. subtilis with MIC values of 64 g/mL. Compound 1 was identified as p-hydroxybenzaldehyde, which was also obtained in its host. In conclusion, the endophytic fungus Penicillium brefeldianum produces similar secondary metabolites and antibacterial activity as its host plant.


Sign in / Sign up

Export Citation Format

Share Document