Diagnosis of potassium deficiency in faba bean and chickpea by plant analysis

1998 ◽  
Vol 38 (5) ◽  
pp. 503 ◽  
Author(s):  
N. Aini ◽  
C. Tang

Summary. Critical potassium (K) concentrations for the diagnosis of K deficiency were determined in various shoot parts of faba bean (Vicia faba L. cv. Fiord) and chickpea (Cicer arietinum L. T1587) plants grown at K rates of 0–240 mg K/kg in a K-deficient soil in the glasshouse. Shoot growth of both species increased with rates of K applied and with plant age but faba bean was more responsive to K application than chickpea. Potassium concentrations in plant parts greatly increased with increasing K supply. In faba bean, K concentrations in all shoot parts decreased with plant age irrespective of K supply while in chickpea K concentrations in leaves of K-deficient plants increased with plant age but those in stems decreased. For both species, young leaves had higher K concentrations than old tissues, especially in K-deficient plants. A greater proportion of leaf K was stored in the petioles when K supply was adequate than when K was deficient. Critical K concentrations were determined using the hand-fitted curve and Mitscherlich model at 90% maximum shoot weight and the 2-phase linear model. The critical concentrations varied between plant parts and among the methods used. Critical values decreased with leaf age and were higher in leaf petioles than in leaf blades. Critical K concentrations, developed from hand-fitted curves, in the 1st plus 2nd and 3rd plus 4th leaf blades of faba bean, and leaf petioles below the youngest fully expanded leaf (YFEL) of chickpea were similar between days 48 and 73 for faba bean and between days 55 and 80 for chickpea. It is recommended that the critical values for the diagnosis of K deficiency at 7–8-leaf stages are 1.3–1.5% in YFEL, 1.1–1.2% in the 1st plus 2nd leaf blades below the YFEL and 1.8–2.0% in whole shoot of faba bean, and 1.4–1.5% in YFEL, 2.7–2.8% in the 1st plus 2nd leaf petioles and 2.1–2.2% in whole shoot of chickpea. The gradient of K concentration between young and old leaves occurred before a decrease in shoot growth and may be used for the prognosis of K deficiency.

1994 ◽  
Vol 45 (1) ◽  
pp. 195 ◽  
Author(s):  
S Jongruaysup ◽  
RW Bell ◽  
B Dell

Diagnosis and prognosis of molybdenum (Mo) deficiencies in black gram crops by plant analysis is difficult because Mo standards have not been set and tested in the field. Therefore, critical Mo concentrations, for the diagnosis of Mo deficiency at early flowering and for diagnosis and prognosis at pod filling in black gram, were determined in two glasshouse experiments by examining the relationship of Mo concentrations in young leaves and nodules to shoot nitrogen content or seed dry matter in plants treated with seven levels of Mo supply on a Mo-deficient sandy loam. In severely Mo-deficient plants, shoot dry matter (DM) and shoot nitrogen (N) content were depressed. Molybdenum concentrations in plant parts increased with increasing Mo supply and were closely related to shoot N content. shoot DM, and seed DM. Critical Mo concentrations for diagnosis of hi0 deficiency were obtained from the relationship between N content and &lo concentrations in leaves and nodules. and for prognosis of Mo deficiency were obtained from the relationship between seed yield and Mo concentrations in plant parts. Critical Mo concentrations were much higher in nodules than in leaves, and among young leaf blades, they increased with decreasing leaf age. For diagnosis of Mo deficiency, blades of the leaf immediately older than the youngest fully expanded leaf (YFEL+lb) and nodules are recommended plant parts. Their respective critical concentrations were 22 and 9600 ng Mo/g DM at flowering, and 22 and 3378 ng Mo/g DM at initial pod set. Molybdenum concentrations in the YFEL+lb and nodules at podding were also related to seed production at maturity. Recommended critical h10 concentrations in the YFELflb and nodules at initial pod set for the prognosis of IbIo deficiency for seed DM were 18 and 3000 ng Mo/g DM respectively.


2005 ◽  
Vol 74 (2) ◽  
pp. 75-87 ◽  
Author(s):  
A. Van Delden ◽  
O. Carisse

A greenhouse study was conducted to determine the effects of plant age, leaf age and leaf position on infection of carrot (Daucus carota var. sativa) by Cercospora carotae. Infection was quantified as the number of lesions cm-2 of leaf surface and the length of incubation period. The relative number of lesions decreased linearly with increasing plant age from 39- to 60-d-old plants, and remained low from 60- to 71-d-old plants. The incubation period increased from 9.0 to 16.6 d, with increasing plant age. Relative number of lesions decreased with increasing leaf age from 1 to 36 d, but the variation among leaves was high. The incubation period increased from 9.0 to 18.3 d with increasing leaf age, but lesions on a few young leaves appeared relatively late. Generally, differences in relative number of lesions for leaves on different positions for 10- and 13-wk-old plants were not significant. Infection on all leaves except the two youngest was representative of infection on whole plant. Effect of leaf position on incubation period was different for the 10- and 13-wk-old plants and for the two trials. Plants younger than 60 d old, in the seven-to eight-leaf stages should be used for experiments on the initial development of Cercospora blight of carrots.


2006 ◽  
Vol 131 (3) ◽  
pp. 320-326 ◽  
Author(s):  
Woei-Jiun Guo ◽  
Nean Lee

In this study, effects of leaf age (20 to 240 days), plant age (4, 8, and 14 months after deflasking), and various day/night temperature regimes (16 to 33 °C) on photosynthesis of Phalaenopsis amabilis L. Blume var. formosa Shimadzu (Phal. TS97) leaves were investigated. The diurnal net CO2 uptake in Phal. TS97 leaves was measured and integrated to obtain total net CO2 uptake, which represents photosynthetic efficiency in plants performing crassulacean acid metabolism (CAM). Under all conditions, Phal. TS97 leaves performed typical CAM photosynthesis and reached their highest net CO2 uptake rate, ≈6 μmol·m-2·s-1, after 3 to 4 hours in the dark under a 12-hour photoperiod. When grown under 30 °C day/25 °C night temperature, the total net CO2 uptake of leaf increased with maturation and was highest at 80 days old, 20 days after full expansion. The CAM photosynthetic capacity of mature leaves remained high after maturation and began to decline at a leaf age of 240 days. The trend was consistent with malate fixation but the highest nocturnal malate concentration was observed in 100-day-old leaves. Young leaves or leaves from small juvenile plants had higher daytime CO2 fixation compared to mature leaves or large plants, suggesting that Phal. TS97 leaves progressed from C3-CAM to CAM during the course of maturation. The second newly matured leaf from the top had the highest net CO2 fixation when the newest leaf was 8 cm in length. Although plant age did not influence total CO2 uptake in the leaf, photosynthetic efficiency of leaves in small younger plants was more sensitive to high light intensity, 340 μmol·m-2·s-1 photosynthetic photon flux. The day/night temperature of 32/28 and 29/25 °C resulted in the highest total net CAM CO2 fixation in vegetative Phal. TS97 plants than higher (33/29 °C) and lower temperatures (21/16 °C).


1994 ◽  
Vol 34 (4) ◽  
pp. 469 ◽  
Author(s):  
A Pinkerton ◽  
PJ Randall

Critical concentrations of potassium (K) for the diagnosis of K deficiency were derived for tissues of balansa clover (Trifolium balansae) cv. Paradana, murex medic (Medicago murex) cv. Zodiac, and subterranean clover (T. subterraneum) cv. Karridale. The legumes were grown for 2 seasons at 2 sites to which 7 rates of K fertiliser were applied in each season. Symptoms of K deficiency appeared on leaves of plants at both sites, where <50 kg K/ha had been applied. Diagnostic indices were obtained for K in the dry matter (DM) of blades and petioles of youngest open leaves (YOL) and of whole shoots, and for K in petiolar sap of the YOL. In all species, critical K concentrations in dry matter were initially high but decreased steadily as the season progressed. Critical values were highest for YOL petioles, and simllar for YOL blades and for whole shoots, with good discrimination between deficient and adequately supplied plants for K concentrations in these tissues. Critical concentrations (%) of K in DM of YOL laminae of balansa clover declined from 4.00 in May to 0.70 in November, of YOL petioles from 5.80 in May to 1.40 in October, and of whole shoots from 2.48 in July to 0.68 in November, while critical K concentration (�g/mL) in the YOL petiole sap declined from 1000 in May to 384 in November. The decline in critical K concentration (%) in DM of YOL laminae of murex medic was from 2.75 in May to 1.12 in September, of YOL petioles from 5.58 in May to 1.57 in September, and of whole shoots from 1.57 in July to 0.70 in November. Critical K concentrations (�g/mL) in murex medic petiole sap fell from 1000 in May to 471 in September. The decline in critical K concentrations in DM was related to date and was unaffected by rainfall before sampling, temperature, or sodium concentrations. Critical concentrations in DM of subterranean clover were similar to those in the literature for other cultivars. Critical concentrations in balansa clover agreed with those derived previously from glasshouse experiments. The test for K in petiolar sap was less satisfactory: the decline in critical concentration in sap was less consistent than that in DM, and the critical values for subterranean clover did not agree with published results.


1995 ◽  
Vol 35 (1) ◽  
pp. 79 ◽  
Author(s):  
AD Robson ◽  
LD Osborne ◽  
K Snowball ◽  
WJ Simmons

The effect of sulfur (S) supply on growth and S distribution within lupin and wheat plants was studied in a glasshouse experiment using pots containing 11 lupin or 15 wheat plants in 6 kg soil. Shoot growth and grain yield increased with increasing S supply, and both species produced maximum grain yield at 60 mg S/pot. Wheat yielded a lower percentage of maximum grain yield than lupin where no S was applied. Sulfur concentrations in all shoot parts increased with increasing S supply in both wheat and lupins. In wheat, S concentrations decreased with increasing plant age. At all rates of S, concentrations in old leaves were higher than in the youngest leaves. In lupins, S accumulated in stems when supply was adequate but decreased markedly with S deficiency and plant age. Concentrations in other parts of lupins generally did not change with plant age. Sulfur concentrations in the youngest open leaf blades were higher than those in old leaves at all rates of S. For lupins, critical S concentrations in the young leaves (0.28%), stems (0.07%), and whole shoots (0.15%), and the critical nitrogen (N) to S ratio in young leaves (22), are likely to be valid as diagnostic indices for S deficiency as they do not appear to be affected by plant maturity. In contrast, critical S concentrations (0.14-0.31% S) and N to S ratio (9-19) in young leaves of wheat plants changed sharply with plant age; neither is useful as a diagnostic aid unless the maturity of the plant in known. Field surveys were conducted in the agricultural regions of Geraldton and Dowerin in Western Australia to investigate the incidence of S deficiency in lupin and wheat crops. Sulfur concentrations in lupins and wheat from Dowerin were higher than those sampled at Geraldton. Lupin crops from both regions and wheat from Dowerin had an adequate S supply. Of the wheat sampled at Geraldton, 36% was deficient or marginal in S.


Helia ◽  
2001 ◽  
Vol 24 (35) ◽  
pp. 135-148
Author(s):  
Mohammed El Midaoui ◽  
Ahmed Talouizte ◽  
Benbella Mohamed ◽  
Serieys Hervé ◽  
Ait Houssa Abdelhadi ◽  
...  

SUMMARYAn experiment has been carried out in order to study the behaviour under mineral deficiency of three sunflower genotypes, a population variety (Oro 9) and two hybrids (Mirasol and Albena). Sunflower seedlings were submitted to five treatments: N deficiency (N0), P deficiency (P0), K deficiency (K0), N and K deficiency (N0K0) and a control. Plants were harvested when they reached 3-4 true pairs of leaves. Growth parameters measured (height, total leaf area, root length, root and shoot dry mater) were all significantly reduced by mineral deficiency. Leaf area was most reduced by N0 (-61%) and P0 (-56%). Total dry matter was most affected by N0 (-63%) and by N0K0 (-66%). Genotype comparisons showed that Oro 9 had the highest shoot dry matter while Albena had the lowest root dry matter. Effect of mineral deficiency on content and partitioning of N, P, K, Ca and Na was significant and varied according to treatments and among plant parts. Shoot dry weight was significantly correlated with root N content (r2=0.81) and root K content (r2=-0.61) for N0 and K0.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1207
Author(s):  
Shu-Cheng Duan ◽  
Soon-Jae Kwon ◽  
Seok-Hyun Eom

The leaves and seeds of the faba bean are good sources of L-3,4-dihydroxyphenylalanin (L-dopa), and are usually eaten with thermal cooking methods. However, little information is available on the effect of thermal treatments on their nutritional value. We compared the changes in color, contents of L-dopa, vitamin C (Vc), total phenolics (TP), total flavonoids (TF) and antioxidant activity after dry heating or steaming faba bean leaves and seeds. The young leaves provided higher values of all the estimate factors, regardless of the thermal treatment. Steaming significantly degraded nutritional values of the leaves, but less changed in seeds, whereas dry heat maintained these attributes. The contents of L-dopa, Vc, TP and TF were shown to have strongly positive correlations with antioxidant activity in the leaves, whereas only L-dopa content was positively correlated with antioxidant activity of the seeds. Faba leaves contained relatively high L-dopa which possessed strong antioxidant activity compared to the Vc. As L-dopa is an important contributor to the antioxidant activity of faba leaves and seeds, consuming L-dopa from leaves may provide beneficial effects not only regarding Parkinson’s Disease.


Hoehnea ◽  
2017 ◽  
Vol 44 (2) ◽  
pp. 236-245 ◽  
Author(s):  
Juliana Moreno Pina ◽  
Sérgio Tadeu Meirelles ◽  
Regina Maria de Moraes

ABSTRACT This study aimed to investigate the importance of leaf age, meteorological conditions and ozone concentration (O3) on gas exchange of Psidium guajava ‛Paluma'. Saplings were grown and exposed in standard conditions in the city of São Paulo, in six periods of three months with weekly measurements in young and mature leaves. Gas exchanges were higher in young leaves for almost the entire experiment. Mature leaves showed greater reduction in gas exchange. The multivariate analysis of biotic and abiotic variables indicated that vapor pressure deficit (VPD), O3 concentration and radiation were the main variables associated with gas exchange decrease in young leaves. In mature leaves the influence of VPD is lower, but the temperature importance is higher. Moreover, the opposition between assimilation and O3 is more evident in mature leaves, indicating their greater sensitivity to O3.


2012 ◽  
Vol 81 (3) ◽  
pp. 193-201 ◽  
Author(s):  
Janet M. León Morales ◽  
Mario Rodríguez-Monroy ◽  
Gabriela Sepúlveda-Jiménez

The effect of copper stress on betacyanin accumulation and guaiacol peroxidase (GPOD) activity in leaves of different age was evaluated in red beet (<em>Beta vulgaris </em>L. var. Crosby Egyptian) plants. In hydroponic culture, plants were treated with 0.3 μM (control), 50 μM, 100 μM, and 250 μM of CuSO<sub>4</sub> for 6 days. Copper was taken up and accumulated in old roots but was not translocated to leaves. However in young leaves, the increase of lipid peroxidation and reduction of growth were evident from day 3 of copper exposure; whereas in old leaves, the lipid peroxidation and growth were the same from either copper-treated or control plants. In response to copper exposure, the betacyanin accumulation was evident in young leaves by day 3, and continued to increase until day 6. Betacyanin only were accumulated in old leaves until day 6, but the contents were from 4 to 5 times lower than those observed in young leaves at the same copper concentrations. GPOD activity increased 3.3- and 1.4-fold in young and old leaves from day 3 of copper treatment respectively, but only in the young leaves was sustained at the same level until day 6. Old roots shown betacyanin in the control plants, but the betacyanin level and growth were reduced with the copper exposure. In contrast, young roots emerged by copper effect also accumulated copper and showed the highest betacyanin content of all plant parts assayed. These results indicate that betacyanin accumulation and GPOD activity are defense responses to copper stress in actively growing organs.


1969 ◽  
Vol 87 (3-4) ◽  
pp. 123-135 ◽  
Author(s):  
Luis Sánchez ◽  
Mildred Zapata ◽  
Rocío del P. Rodríguez ◽  
James S. Beaver

Seventeen pathogenic strains of Pseudomonas cichorii were isolated from leaf samples of coffee (Coffea arabica) collected from nurseries in eight municipalities of Puerto Rico. Two different inoculation methods were evaluated under in vitro conditions: inoculation of plant-attached old and young leaves grown under greenhouse conditions, and plant-detached young coffee leaves grown under field conditions. Pseudomonas cichorii was more virulent in older leaves, thus indicating that resistance mechanisms differ according to leaf age. Both inoculation methods were reliable in identifying resistant genotypes. Three commercial varieties of coffee (Borbón, Pacas and Caturra) were susceptible to bacterial leaf blight, whereas coffee species Coffea liberica var. Excelsa and Coffea canephora var. Robusta were resistant.


Sign in / Sign up

Export Citation Format

Share Document