Crop production in a rotation trial at Tarlee, South Australia

1995 ◽  
Vol 35 (7) ◽  
pp. 865 ◽  
Author(s):  
JE Schultz

A crop rotation trial was established in 1977 on a hard-setting red-brown earth at Tarlee, South Australia, to monitor the long-term effect of intensive and traditional rotations on soil properties and crop production. The rotations involve wheat alternating with cereals, grain legumes, pasture, and fallow. There are 3 stubble + tillage treatments: remove stubble + cultivate, retain stubble + cultivate, retain stubble + no tillage. Three rates of nitrogen (0,40, 80 kg N/ha as ammonium nitrate) are applied to the wheat. Grain yield varied with seasonal conditions, and water use efficiencies were up to 10 kg/ha. mm. In the more productive rotations, wheat grain yields expressed as a percentage of potential yield tended to increase over time. The best wheat yields were always in rotations that included a grain legume or legume pasture, with additional yield increases in all rotations coming from the use of N fertiliser. By comparison with rotation and N fertiliser effects, there was little effect of the stubble + tillage treatments on grain yield. Most of the yield variations were related to differences in tiller density or grains per ear, with grain weight remaining relatively constant over all seasons. There was a tendency for grain legume yields to decrease over the latter years of the trial, and this was attributed to the build-up of plant diseases through growing the same species on the same plot every second year. Overall, faba beans were the highest yielding grain legume, and the wheat-beans rotation, with 80 kg N/ha on the wheat, gave highest total grain production. Data for residue remaining after harvest indicate that in some years there is less than the desired minimum levels to give adequate protection against erosion, so any grazing of the residues must be carefully managed.

1963 ◽  
Vol 3 (11) ◽  
pp. 319 ◽  
Author(s):  
JS Russell

Examination of results from a large number of experiments in the wheat growing areas of South Australia has shown a relation between grain yield response to nitrogen fertilizer and both grain nitrogen percentage and the ratio. (Yield of grain)/(Amount of nitrogen in grain and straw) of corresponding unfertilized wheat plants. With Gabo, large yield responses to nitrogen fertilizer were associated with grain nitrogen percentages of less than 2.0 per cent N (9.9 per cent protein). Above 2.3 per cent N (11.3 per cent protein) positive responses to nitrogen were small and some negative responses were found. Similar overall trend were shorn by Insignia 49, Sabre and Quadrat. Exponential regression equations were calculated for Gabo allowing prediction of grain yield response at rates up to 46 lb fertilizer N an acre under conditions which result in grain protein contents of 7.5 to 16 per cent. Most profitable rates of nitrogen fertilizer application were also calculated for several different fertilizer-grain price levels. Possible value of the nitrogen content of wheat grain in the selection of regions, soil types, and cultural practices where nitrogen fertilizer may be used is discussed.


Author(s):  
B.L. Jat ◽  
P. Pagaria ◽  
A.S. Jat ◽  
H.D. Choudhary ◽  
T. Khan ◽  
...  

The most important factor that affects the crop production in terms of nutritional content of foliar plants is the global climate change. Herbivore’s growth, development, survival and geographical distribution all are determined by elevated CO2 and temperature. The interactions between herbivores and plants have changed due to increasing level of CO2 and temperature. The effect of high CO2 and temperature on grain legume plant which change in to plant physiology (e.g., nutritional content, foliage biomass) and how it change in herbivory metabolism rate and food consumption rate. Plant injury is determined by two factors viz. resistance and tolerance and both are influenced by greater CO2 and temperature. Legumes are an important source of food and feed in the form of proteins and also improve the soil environment. The repercussions of the abiotic factors mentioned above needs discussion among the scientific community. We may able to limit the negative repercussions of stated factors in future breeding projects by harnessing the practical favourable impacts and by including such influences of elevated CO2 and temperature on pulses productivity. The extensive research is necessary to overcome the negative effects of high CO2 and temperature on insect-plant interaction.


2012 ◽  
Vol 151 (3) ◽  
pp. 303-321 ◽  
Author(s):  
P. PELTONEN-SAINIO ◽  
A. HANNUKKALA ◽  
E. HUUSELA-VEISTOLA ◽  
L. VOUTILA ◽  
J. NIEMI ◽  
...  

SUMMARYCrop-based protein self-sufficiency in Finland is low. Cereals dominate the field cropping systems in areas that are also favourable for legumes and rapeseed. The present paper estimated the realistic potential for expanding protein crop production taking account of climatic conditions and constraints, crop rotation requirements, field sizes, soil types and likelihood for compacted soils in different regions. The potential for current expansion was estimated by considering climate change scenarios for 2025 and 2055. By using actual regional mean yields for the 2000s, without expecting any yield increase during the expansion period (due to higher risks of pests and diseases), potential production volumes were estimated. Since rapeseed, unlike grain legumes, is a not a true minor crop, its expansion potential is currently limited. Thus, most potential is from the introduction of legumes into cropping systems. The current 100000 ha of protein crops could be doubled, and areas under cultivation could reach 350000 and 390000 ha as a result of climate warming by 2025 and 2055, respectively. Such increases result mainly from the longer growing seasons projected for the northern cropping regions of Finland. Self-sufficiency in rapeseed could soon increase from 0·25 to 0·32, and then to 0·50 and 0·60 by 2025 and 2055, respectively. If legume production expands according to its potential, it could replace 0·50–0·60 of currently imported soybean meal, and by 2025 it could replace it completely. Replacement of soybean meal is suitable for ruminants, but it presents some problems for pig production, and is particularly challenging for poultry.


2017 ◽  
Vol 68 (11) ◽  
pp. 985 ◽  
Author(s):  
Muhammad Farooq ◽  
Faisal Nadeem ◽  
Nirmali Gogoi ◽  
Aman Ullah ◽  
Salem S. Alghamdi ◽  
...  

Thermal stress during reproductive development and grain-filling phases is a serious threat to the quality and productivity of grain legumes. The optimum temperature range for grain legume crops is 10−36°C, above which severe losses in grain yield can occur. Various climatic models have simulated that the temperature near the earth’s surface will increase (by up to 4°C) by the end of this century, which will intensify the chances of heat stress in crop plants. The magnitude of damage or injury posed by a high-temperature stress mainly depends on the defence response of the crop and the specific growth stage of the crop at the time of exposure to the high temperature. Heat stress affects grain development in grain legumes because it disintegrates the tapetum layer, which reduces nutrient supply to microspores leading to premature anther dehiscence; hampers the synthesis and distribution of carbohydrates to grain, curtailing the grain-filling duration leading to low grain weight; induces poor pod development and fractured embryos; all of which ultimately reduce grain yield. The most prominent effects of heat stress include a substantial reduction in net photosynthetic rate, disintegration of photosynthetic apparatus and increased leaf senescence. To curb the catastrophic effect of heat stress, it is important to improve heat tolerance in grain legumes through improved breeding and genetic engineering tools and crop management strategies. In this review, we discuss the impact of heat stress on leaf senescence, photosynthetic machinery, assimilate translocation, water relations, grain quality and development processes. Furthermore, innovative breeding, genetic, molecular and management strategies are discussed to improve the tolerance against heat stress in grain legumes.


1995 ◽  
Vol 35 (4) ◽  
pp. 515 ◽  
Author(s):  
GK McDonald

The grain yield of field pea (Pisum sativum L.) between 1959-60 and 1991-92 was examined in selected Hundreds in important peagrowing regions of South Australia. Over the 33 years, the rates of increase in grain yield have been substantial, ranging from 20 to 48 kg/ha.year. The rate of increase in the State average for the same period was 22 kg/ha. year. The largest rates of increase have occurred mainly in the Hundreds in the higher rainfall areas. Yields have increased irregularly. During the 1960s grain yields rose relatively slowly, but from the mid 1970s to the mid 1980s, large increases occurred. Since then, yields have increased relatively little or, in some Hundreds, declined. With one exception, grain yield was positively and significantly correlated with seasonal (April-October) rainfall in each Hundred, but there were few significant correlations with rainfall in individual months. Yield was often correlated with winter and autumn rainfall but not with spring rainfall. The efficiencies of seasonal water use in the Hundreds ranged from 2.7 to 4.8 kg/ha.mm; these were lower than the maximum values recorded for other winter grain legumes, suggesting that water use efficiencies can improve substantially.


2004 ◽  
Vol 31 (3) ◽  
pp. 249 ◽  
Author(s):  
Greg Mutze ◽  
Ron Sinclair

Replicated field trials were conducted to compare the efficacy of zinc phosphide, strychnine and chlorpyrifos for the control of house mice (Mus domesticus) infesting recently sown wheat crops in South Australia. Bait was prepared using whole-wheat grain or grain-based pellets and broadcast into the crops at 1 kg ha–1. Treatment with zinc phosphide reduced mouse numbers by 98%. Two treatments with strychnine baits, applied 11 days apart, also reduced mouse numbers by 98% with no evidence of bait aversion in mice that survived the initial treatment. On the basis of these and other published results, zinc phosphide is considered an effective alternative to strychnine for control of house mice in cereal crops. Chlorpyrifos baits reduced mouse numbers by less than 10%. The trial began too late in the growing season to prevent substantial mouse damage to seed grain and seedlings. The number of seedlings established at treatment time one month after sowing explained 84% of variation in crop yield. Mouse damage is estimated to have reduced yield by more than 0.5 t ha–1 or 15% of potential yield and cost the grower more than $30 000 in lost production from the 300-ha study area.


1998 ◽  
Vol 49 (1) ◽  
pp. 33 ◽  
Author(s):  
A. N. Ganeshamurthy

Sulfur (S) efficiency parameters were evaluated in soybean-wheat cropping systems in relation to rates of applied S in field experiments on Typic Haplusterts. The parameters evaluated were grain yield per kg fertiliser S applied, S harvest index (SHI), S utilisation from soil (SUS), and fertiliser (SUF) and S efficiency ratios measured as grain yield per kg S uptake by the shoot or grain yield per kg S uptake by the grain. In addition, grain and straw yields, S uptake by both crops, and fertiliser S requirements for optimum production of the 2 crops were also studied. Both soybean and wheat crops responded significantly to S when applied at 0-40 kg/ha on S-deficient soils. The calculated optimum rates of application of fertiliser S to achieve 90% of the maximum yield were 19-38 kg S/ha for soybean and 28-33 kg S/ha for wheat over the 2-year period. The efficiency of crop production as measured by grain or seed yield per kg S applied was greater at lower rates of S application; however, when fertiliser S was applied at a higher rate than 40 kg S/ha, the efficiency declined. Wheat produced more grain yield per kg S applied than soybean. The SHI indicated more efficient translocation of S to soybean seeds than wheat grain. The SUF was greater in wheat, whereas SUS was similar in both soybean and wheat.


Soil Research ◽  
2009 ◽  
Vol 47 (7) ◽  
pp. 737 ◽  
Author(s):  
D. V. Murphy ◽  
M. Osman ◽  
C. A. Russell ◽  
S. Darmawanto ◽  
F. C. Hoyle

Accurate and rapid prediction of the spatial structure of soil nitrogen (N) supply would have both economic and environmental benefits with respect to improved inorganic N fertiliser management. Yet traditional biochemical indices of soil N supply have not been widely incorporated into fertiliser decision support systems or environmental risk monitoring programs. Here we illustrate that in a low-input, semi-arid environment, potentially mineralisable N (PMN, as determined by anaerobic incubation) explained 21% of wheat grain yield (P = 0.003), whereas there was no significant relationship between wheat grain yield and inorganic N fertiliser application. We also assessed the spatial pattern of PMN using a structured grid soil sampling strategy over a 10-ha area (180 separate samples, 0–0.1 m). PMN in each soil sample was determined by standard biochemical analysis and also predicted using a fourier transform infrared spectrometer (FTIR). Findings illustrate that FTIR was able to significantly predict (P < 0.001) PMN values in soil and has the advantage of enabling high sample throughput and rapid (within minutes) soil analysis. Given the relatively low cost of FTIR machines and ease of use, such an approach has practical application in situations where analysis cost or access to equipped laboratories has hindered the measurement and monitoring of soil N supply within paddocks and across regions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bochra Kammoun ◽  
Etienne-Pascal Journet ◽  
Eric Justes ◽  
Laurent Bedoussac

Ensuring food security for a world population projected to reach over nine billion by 2050 while mitigating the environmental impacts and climate change represent the major agricultural challenges. Diversification of the cropping systems using notably cereal–legume mixtures is one key pathway for such agroecological intensification. Indeed, intercropping is recognised as a practice having the potential to increase and stabilise the yields in comparison with sole crops while limiting the use of inputs notably when species exploit resources in a complementary way. However, predicting intercropped species grain yield remains a challenge because the species respond to competition through complex genotype x cropping mode interactions. Here, we hypothesised that the grain yield achieved by a cultivar in low nitrogen input durum wheat–grain legume intercrops (ICs) could be estimated using a few simple variables. The present work is based on a 2-year field experiment carried out in southwestern France using two durum wheat (Triticum turgidum L.), four winter pea (Pisum sativum L.), and four winter faba bean (Vicia faba L.) genotypes with contrasting characteristics, notably in terms of height and precocity, to explore a wide range of durum wheat–grain legume phenotypes combinations to generate variability in terms of yield and species proportion. The major result is that the yield of durum wheat–grain legume IC component in low nitrogen input conditions could be correctly estimated from only three variables: (i) wheat cultivar full density sole crop (SC) yield, (ii) legume cultivar half density sole crop (SC½) yield, and (iii) an indicator of legume cultivar response to interspecific competition. The latter variable, the interspecific interaction index (IE), reveals cultivars' competitive abilities and tolerance to competition. However, to propose generic IC design and management procedures, further mechanistic understanding is required to better understand the links between tolerance to interspecific competition and cultivar phenotype characteristics. In particular, a special emphasis on the grain legume is needed as their response to interspecific competition appears less predictable than that of durum wheat. Cultivar choice is a key element to optimise the functional complementarity and subsequent IC advantages. This work proposes a simple tool to assist the design of specific breeding programs for cultivars ideotypes adapted to intercropping.


Author(s):  
R. A. L. Kanton ◽  
P. V. V. Prasad ◽  
E. Y. Ansoba ◽  
A. L. Alhassan ◽  
J. K. Bidzakin ◽  
...  

Low soil fertility is the most significant agricultural production constraint also mentioned by resource-poor Farmers participating in the Annual Review and Planning Sessions organized under the auspices of the Research, Extension and Farmer Linkage Committees across Ghana. It is in an attempt to find a very cost effective but yet cheaper and most sustainable solution that this work was undertaken. A six-year field trials were conducted at the Manga Agricultural Research Station near Bawku in the Upper East Region in northern Ghana to determine the most suitable grain legume rotation partners for maize relative to continuous cultivation of maize (Zea mays L.) after maize, which is often practiced by cereal farmers under inherently poor soils conditions. The grain legumes evaluated were cowpea [Vigna unguiculata (L.) Walp.], soybean [Glycine max (L.) Merr.], groundnuts (Arachis hypogaea), pigeon pea [Cajanus cajan (L.) Millsp.], mucuna (Mucuna pruriens (L.) DC and green gram (Vigna radiate (L.) Wilczek. The trial was established in a randomized complete block with four replications. Growth, development, grain yield and its components and some derived variables were computed. Mean grain yield of maize in the first year, preceding rotation was 2055 Mt ha-1. All the grain legumes recorded significantly greater grain yields as compared to the farmers’ practice of continuous cultivation of maize. This is consistent with the very low Carbon and Nitrogen ratios recorded under the grain legumes as compared to the continuous maize treatment. Maize after pigeon pea, groundnuts and cowpea recorded consistently superior grain yields as compared to the other grain legumes and farmers’ practice. Mean grain yield increment recorded for one of the first cycle of rotation was as high as 62% over continuous cropping of maize. Similarly, mean grain yield increment of maize after pigeon pea, groundnut and cowpea over continuous maize was 42.5, 41.5 and 31.5% respectively, over the farmer practice. It was concluded that continuous crop rotation of grain legumes with maize resulted in higher maize grain yields as reflected in the superior economic returns on a sustainable basis than the current farmers’ practice of continuous cropping of maize after over the years. This obviously has important implications on food security at the farmer household level not only in northern Ghana but equally so in other countries with similar, agro-ecology zones in the African and Asian Continents.


Sign in / Sign up

Export Citation Format

Share Document