An overview of genomics research and its impact on livestock reproduction

2004 ◽  
Vol 16 (2) ◽  
pp. 47 ◽  
Author(s):  
Gary Alan Rohrer

The amount of information currently available about the genomes of many livestock species, especially cattle and pigs, has increased dramatically in the past few years and the rate of its accumulation will continue to increase. A large number of scientific ‘tools’ is currently available for research aimed at understanding biological processes important to livestock production. These resources are being used to understand biological processes regulating reproduction, body composition and immune function in all livestock species. This research will create many opportunities to develop new tools for the improvement of livestock production. The best commercial application of genomics is in conjunction with reproductive enhancing technologies, such as artificial insemination, embryo transfer and cloning.

Author(s):  
Leslie M. Loew

A major application of potentiometric dyes has been the multisite optical recording of electrical activity in excitable systems. After being championed by L.B. Cohen and his colleagues for the past 20 years, the impact of this technology is rapidly being felt and is spreading to an increasing number of neuroscience laboratories. A second class of experiments involves using dyes to image membrane potential distributions in single cells by digital imaging microscopy - a major focus of this lab. These studies usually do not require the temporal resolution of multisite optical recording, being primarily focussed on slow cell biological processes, and therefore can achieve much higher spatial resolution. We have developed 2 methods for quantitative imaging of membrane potential. One method uses dual wavelength imaging of membrane-staining dyes and the other uses quantitative 3D imaging of a fluorescent lipophilic cation; the dyes used in each case were synthesized for this purpose in this laboratory.


2020 ◽  
Vol 26 ◽  
Author(s):  
Pengmian Feng ◽  
Lijing Feng ◽  
Chaohui Tang

Background and Purpose: N 6 -methyladenosine (m6A) plays critical roles in a broad set of biological processes. Knowledge about the precise location of m6A site in the transcriptome is vital for deciphering its biological functions. Although experimental techniques have made substantial contributions to identify m6A, they are still labor intensive and time consuming. As good complements to experimental methods, in the past few years, a series of computational approaches have been proposed to identify m6A sites. Methods: In order to facilitate researchers to select appropriate methods for identifying m6A sites, it is necessary to give a comprehensive review and comparison on existing methods. Results: Since researches on m6A in Saccharomyces cerevisiae are relatively clear, in this review, we summarized recent progresses on computational prediction of m6A sites in S. cerevisiae and assessed the performance of existing computational methods. Finally, future directions of computationally identifying m6A sites were presented. Conclusion: Taken together, we anticipate that this review will provide important guides for computational analysis of m 6A modifications.


1997 ◽  
Vol 62 ◽  
Author(s):  
A. De Schrijver ◽  
L. Nachtergale ◽  
L. De Temmerman ◽  
J. M.F. Frechilla ◽  
S. Mussche ◽  
...  

-


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 113 ◽  
Author(s):  
Stephanie Maia Acuña ◽  
Lucile Maria Floeter-Winter ◽  
Sandra Marcia Muxel

An inflammatory response is essential for combating invading pathogens. Several effector components, as well as immune cell populations, are involved in mounting an immune response, thereby destroying pathogenic organisms such as bacteria, fungi, viruses, and parasites. In the past decade, microRNAs (miRNAs), a group of noncoding small RNAs, have emerged as functionally significant regulatory molecules with the significant capability of fine-tuning biological processes. The important role of miRNAs in inflammation and immune responses is highlighted by studies in which the regulation of miRNAs in the host was shown to be related to infectious diseases and associated with the eradication or susceptibility of the infection. Here, we review the biological aspects of microRNAs, focusing on their roles as regulators of gene expression during pathogen–host interactions and their implications in the immune response against Leishmania, Trypanosoma, Toxoplasma, and Plasmodium infectious diseases.


Author(s):  
Fabricio Almeida-Silva ◽  
Kanhu C Moharana ◽  
Thiago M Venancio

Abstract In the past decade, over 3000 samples of soybean transcriptomic data have accumulated in public repositories. Here, we review the state of the art in soybean transcriptomics, highlighting the major microarray and RNA-seq studies that investigated soybean transcriptional programs in different tissues and conditions. Further, we propose approaches for integrating such big data using gene coexpression network and outline important web resources that may facilitate soybean data acquisition and analysis, contributing to the acceleration of soybean breeding and functional genomics research.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhihao Fang ◽  
Yiqiu Hu ◽  
Jinhui Hu ◽  
Yanqin Huang ◽  
Shu Zheng ◽  
...  

AbstractAs the predominant modification in RNA, N6-methyladenosine (m6A) has attracted increasing attention in the past few years since it plays vital roles in many biological processes. This chemical modification is dynamic, reversible and regulated by several methyltransferases, demethylases and proteins that recognize m6A modification. M6A modification exists in messenger RNA and affects their splicing, nuclear export, stability, decay, and translation, thereby modulating gene expression. Besides, the existence of m6A in noncoding RNAs (ncRNAs) could also directly or indirectly regulated gene expression. Colorectal cancer (CRC) is a common cancer around the world and of high mortality. Increasing evidence have shown that the changes of m6A level and the dysregulation of m6A regulatory proteins have been implicated in CRC carcinogenesis and progression. However, the underlying regulation laws of m6A modification to CRC remain elusive and better understanding of these mechanisms will benefit the diagnosis and therapy. In the present review, the latest studies about the dysregulation of m6A and its regulators in CRC have been summarized. We will focus on the crucial roles of m6A modification in the carcinogenesis and development of CRC. Moreover, we will also discuss the potential applications of m6A modification in CRC diagnosis and therapeutics.


1991 ◽  
Vol 3 (6) ◽  
pp. 627 ◽  
Author(s):  
G Evans

Current use of reproductive technology in the Australian livestock industries is limited, though it increased in line with higher prices for beef and wool through the 1980s. The required techniques, many of which were developed in Australia, are available and the level of expertise is comparable to the best in the world. However, the extensive pastoral industries do not readily lend themselves to these procedures. Only in the dairy industry is artificial insemination used to a significant degree. On the other hand, application of the technology in the pastoral industries is confined largely to studs and breeding cooperatives which provide breeding animals for producer flocks and herds. Hence the impact of applied technology may be more widespread than first appears. Until recently, little regard was paid to application of the technology along sound breeding principles. Artificial insemination and multiple ovulation and embryo transfer (MOET) have not been used so much in planned breeding programmes aimed at local improvement of stock, but more to proliferate genes of reputedly superior stock, imported either from overseas or elsewhere in Australia. This is particularly true of MOET, where the incentive to use it is commonly a short term cash gain made from proliferating breeding stock of a particularly valuable and usually novel strain or breed. Recent technological improvements which render the use of reproductive technology cheaper and more effective will lead to its more widespread use in commercial practice. Techniques for embryo freezing and splitting have been greatly simplified and quickly put into practice. The novel livestock technologies of in vitro oocyte maturation and fertilization have already found commercial application overseas. Fecundity-enhancing products have also been adopted by the livestock industries. There is potential value for greater use of reproductive technology in the livestock industries provided it is implemented according to sound breeding principles and provided associated management practices are applied simultaneously.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Máté Osvald ◽  
Gergely Maróti ◽  
Bernadett Pap ◽  
János Szanyi

Reinjection of heat-depleted thermal water has long been in the center of scientific interest in Hungary regarding around 1000 operating thermal wells. While the physical and chemical aspects of reinjection have partly been answered in the past years, the effects of biological processes are still less known. We carried out our investigations in the surface elements of the Hódmezővásárhely geothermal system which is one of the oldest operating geothermal systems in Hungary. About one-third of the used geothermal water has been reinjected since 1998 by two reinjection wells at the end of the thermal loops. During the operation, plugging of the surface system was experienced within a few-day-long period, due to biological processes. The goal of our research was to find the dominant species of the microbial flora and to make a proposal to avoid further bacterial problems. We found that the reinjected, therefore the produced, water’s chemical oxygen demand, phenol index, and BTEX composition basically determine the appearing flora on the surface. When the concentration of these compounds in the thermal water is significant and residence time is long enough in the buffer tank, certain bacteria can be much more dominant than others, thus able to form a biofilm which plugs the surface equipment much more than it is expected.


Open Biology ◽  
2014 ◽  
Vol 4 (2) ◽  
pp. 130217 ◽  
Author(s):  
Puneet Sharma ◽  
Alo Nag

The ability of cullin 4A (CUL4A), a scaffold protein, to recruit a repertoire of substrate adaptors allows it to assemble into distinct E3 ligase complexes to mediate turnover of key regulatory proteins. In the past decade, a considerable wealth of information has been generated regarding its biology, regulation, assembly, molecular architecture and novel functions. Importantly, unravelling of its association with multiple tumours and modulation by viral proteins establishes it as one of the key proteins that may play an important role in cellular transformation. Considering the role of its substrate in regulating the cell cycle and maintenance of genomic stability, understanding the detailed aspects of these processes will have significant consequences for the treatment of cancer and related diseases. This review is an effort to provide a broad overview of this multifaceted ubiquitin ligase and addresses its critical role in regulation of important biological processes. More importantly, its tremendous potential to be exploited for therapeutic purposes has been discussed.


Sign in / Sign up

Export Citation Format

Share Document