128 Evidence that Pregnancy-Associated Serum Protein A (PAPP-A) Plays Role on Bovine In Vitro Embryo Production

2018 ◽  
Vol 30 (1) ◽  
pp. 204
Author(s):  
A. B. Giroto ◽  
F. F. Franchi ◽  
P. K. Fontes ◽  
M. A. Maioli ◽  
G. P. Nogueira ◽  
...  

The aim of present work was to assess the effects of pregnancy-associated serum protein A (PAPP-A) during oocyte in vitro maturation (IVM) on meiosis progression, DNA fragmentation, IGF-1 free bioavailability, as well as effects on embryo yield and transcriptional profile of matured cumulus–oocyte complexes (COC). First, the COC from a local abattoir were submitted to IVM for 24 h with TCM-199 serum-free medium supplemented with PAPP-A (100 ng mL−1: P100 group) or not (control group). The matured oocytes were submitted to evaluation of DNA fragmentation (TUNEL assay) and meiosis progression (Hoechst 33342; n = 5 replicates; 20 COC/replicate per group), and maturation medium was collected to measure levels of free IGF-1. Then, the oocytes were separated from their respective cumulus cells and followed for the transcriptional profile of 96 genes (3 reference genes; ACTH, GAPDH, PPIA) by RT-qPCR using Taqman® assays in the HD-Biomark System® (Fluidigm Corp., South San Francisco, CA, USA). Further, the matured oocytes were submitted to in vitro fertilization followed by in vitro culture for 7 days. On Days 3 and 7, the cleavage and blastocyst (BL) rates were verified. On Day 7, BL (3 BL/pool; control: n = 4 pools; P100: n = 5 pools) were collected to analyse the transcriptional pattern of 96 genes (4 reference genes; ACTH, GAPDH, PPIA, and SDHA) as described above for COC. The DNA fragmentation, meiosis progression, cleavage, and BL rates were calculated as percentages and transformed to arcsine. The mRNA abundance of target genes was normalized by geometric mean of reference genes and data were transformed to fold change. The free IGF-I concentration also was transformed to fold change. All data were tested by ANOVA and means were compared with t-test or Wilcoxon tests using JMP software (SAS Institute Inc., Cary, NC, USA). Differences were considered significant when P ≤ 0.05. The addition of PAPP-A increased free IGF-I concentration 1.27-fold in IVM medium. There were no alterations in the percentage of oocytes in metaphase II or oocyte DNA fragmentation. In cumulus cells, the genes BCL2, GPX1, RPLP0, and RPS25 (anti-apoptotic and anti-oxidative stress) was higher in the P100 group, whereas DICER, GREM1, GUCY1B3, and FOXO3 (cell proliferation, cumulus expansion, cGMP regulator, and apoptotic initiator, respectively) were higher in the control group. In oocytes, the mRNA relative abundance of ACACA, BCL2, H1FOO, TXNRD1, and VCAN (related with fatty acid synthesis, anti-apoptotic effect, chromatin regulation, oxidative stress processes, and cell proliferation, respectively) was higher in the P100 group. There was no difference in cleavage rate or embryo yield. The mRNA abundance of genes related to cellular stress (ATF4, GPX4, and HIF1A) and lipid metabolism (FASN and SREBF1) was lower in embryos of the P100 group. On the other hand, genes involved in cellular proliferation/differentiation (MAPK1) and pluripotency (POU5F1) were up-regulated in embryos of the P100 group. In conclusion, the addition of PAPP-A during the IVM increased free IGF-I and modulates the gene expression in COC and blastocysts, which could modify oocyte competence and embryo development.

Reproduction ◽  
2003 ◽  
pp. 369-376 ◽  
Author(s):  
S Ikeda ◽  
H Imai ◽  
M Yamada

The aim of this study was to investigate whether apoptosis occurs in cumulus cells during in vitro maturation (IVM) of bovine cumulus-enclosed oocytes (CEOs). The bovine CEOs obtained from ovaries from an abattoir were cultured for 24 h in IVM medium in the presence or absence of 10% (v/v) fetal bovine serum. The developmental competence of enclosed oocytes, as assessed by the development of the blastocyst after IVF, was significantly higher in the serum-treated group than in the control group. The morphological features of apoptosis that were analysed by orcein staining were hardly detectable in the cumulus cells at the start (0 h) of IVM, but were evident at the end (24 h) of IVM both in the control and serum-treated groups. Genomic DNA was extracted from CEOs at 0, 6, 12, 18 and 24 h of IVM and subjected to ligation-mediated PCR (LM-PCR) to detect apoptotic internucleosomal DNA fragmentation. DNA fragmentation was hardly detectable at the start of IVM, but increased in a time-dependent manner as the IVM culture proceeded. DNA fragmentation was not observed in the oocytes, indicating that fragmentation occurs in cumulus cells. The degree of fragmentation was lower in the serum-treated group compared with the control group. The LM-PCR analysis of DNA extracted from CEOs at 24 h of IVM, in which the DNA had been pretreated with Klenow enzyme or T4 DNA polymerase, revealed that the characteristic forms of the DNA ends generated during cumulus cell apoptosis were mainly 3'-overhangs and blunt ends. In conclusion, the results of the present study demonstrate that cumulus cells in bovine CEOs spontaneously undergo apoptosis during IVM. The degree of apoptosis may be correlated with the developmental competence of the enclosed oocytes.


Reproduction ◽  
2006 ◽  
Vol 132 (4) ◽  
pp. 549-557 ◽  
Author(s):  
S Ikeda ◽  
K Saeki ◽  
H Imai ◽  
M Yamada

We previously reported that when midkine (MK), a heparin-binding growth differentiation factor was used inin vitromaturation (IVM) culture of bovine cumulus-enclosed oocytes (CEOs), their developmental competence to the blastocyst stage afterin vitrofertilization (IVF) was enhanced and the effect of MK might be mediated by its action upon mural granulosa cells and cumulus cells that closely surround the oocyte. In the present study, when denuded oocytes (DOs) were matured in IVM medium with or without MK (200 ng/ml) in the presence or absence of isolated cumulus cell masses and subjected to IVF, the enhancing effects of MK on the developmental competence of DOs to the blastocyst stage after IVF were exerted only in the presence of cumulus cells. In addition, we prepared the conditioned media of granulosa cells cultured with or without 200 ng MK/ml (CMMK+ or CMMK− respectively) and examined their effects on the IVM of DOs in terms of their developmental competence to the blastocyst stage after IVF. The supplementation of CMMK+ into IVM medium at 40% (v/v) significantly enhanced the blastocyst development compared with the no additive control and the CMMK− supplemented groups. Furthermore, the effects of MK during IVM of bovine CEOs on the cumulus cell apoptosis were investigated. CEOs were cultured up to 24 h in IVM medium without (control) or with 200 ng MK/ml. The genomic DNA was extracted from CEOs at 0, 6, 12, 18 and 24 h of IVM and subjected to ligation-mediated PCR (LM-PCR) to detect the apoptotic internucleosomal DNA fragmentation. DNA fragmentation was scarcely detected at the start of IVM, whereas it increased time-dependently as the IVM culture progressed. The degree of the fragmentation was significantly lower in the MK-treatment group compared with the control group at 18 and 24 h of IVM. The apoptosis-suppressing effect of MK on cumulus cells was further confirmedin situby using TUNEL on CEOs. In conclusion, data from the present study further confirmed that MK enhances the developmental competence of bovine oocytes via cumulus and granulosa cells. It was also demonstrated that MK suppresses the apoptosis that occurs in cumulus cells during the period of IVM of bovine CEOs. The putative soluble factor(s) from cumulus cells was suggested from the experiment using CMMK+ . MK may promote the production of such factors in part by its anti-apoptotic effects on cumulus cells.


2020 ◽  
Vol 9 (1) ◽  
pp. 23-28
Author(s):  
Takashi Kurosawa ◽  
Yutaka Mifune ◽  
Atsuyuki Inui ◽  
Hanak Nishimoto ◽  
Yasuhiro Ueda ◽  
...  

Aims The purpose of this study was to evaluate the in vitro effects of apocynin, an inhibitor of nicotinamide adenine dinucleotide phosphate oxidase (NOX) and a downregulator of intracellular reactive oxygen species (ROS), on high glucose-induced oxidative stress on tenocytes. Methods Tenocytes from normal Sprague-Dawley rats were cultured in both control and high-glucose conditions. Apocynin was added at cell seeding, dividing the tenocytes into four groups: the control group; regular glucose with apocynin (RG apo+); high glucose with apocynin (HG apo+); and high glucose without apocynin (HG apo–). Reactive oxygen species production, cell proliferation, apoptosis and messenger RNA (mRNA) expression of NOX1 and 4, and interleukin-6 (IL-6) were determined in vitro. Results Expression of NOX1, NOX4, and IL-6 mRNA in the HG groups was significantly higher compared with that in the RG groups, and NOX1, NOX4, and IL-6 mRNA expression in the HG apo+ group was significantly lower compared with that in the HG apo– group. Cell proliferation in the RG apo+ group was significantly higher than in the control group and was also significantly higher in the HG apo+ group than in the HG apo– group. Both the ROS accumulation and the amounts of apoptotic cells in the HG groups were greater than those in the RG groups and were significantly less in the HG apo+ group than in the HG apo– group. Conclusion Apocynin reduced ROS production and cell death via NOX inhibition in high-glucose conditions. Apocynin is therefore a potential prodrug in the treatment of diabetic tendinopathy. Cite this article: Bone Joint Res 2020;9(1):23–28.


2018 ◽  
Vol 30 (9) ◽  
pp. 1204 ◽  
Author(s):  
Yun-Gwi Park ◽  
Seung-Eun Lee ◽  
Yeo-Jin Son ◽  
Sang-Gi Jeong ◽  
Min-Young Shin ◽  
...  

Oxidative stress is partly responsible for the poor quality of IVM oocytes. The present study investigated the effects of the antioxidant β-cryptoxanthin on the IVM of porcine oocytes and the in vitro development of the ensuing embryos. Oocytes were matured in IVM medium containing different concentrations of β-cryptoxanthin (0, 0.1, 1, 10 or 100 μM). Treatment with 1 µM β-cryptoxanthin (Group 1B) improved polar body extrusion and the expression of maturation-related genes in cumulus cells and oocytes compared with control. In addition, levels of reactive oxygen species decreased significantly in Group 1B, whereas there were significant increases in glutathione levels and expression of the antioxidant genes superoxide dismutase 1 and peroxiredoxin 5 in this group. After parthenogenetic activation, although the cleavage rate did not differ between the control and 1B groups, the blastocyst formation rate was higher in the latter. Moreover, the total number of cells per blastocyst and relative mRNA levels of pluripotency marker and antioxidant genes were significantly higher in the 1B compared with control group. These results demonstrate that β-cryptoxanthin decreases oxidative stress in porcine oocytes and improves their quality and developmental potential.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 2-3
Author(s):  
Theisy P Acosta Pérez

Abstract α-tocopherol is known to be a powerful antioxidant, in this regard, it was added to bovine oocyte in vitro maturation media to evaluate its effect on oocyte maturation. Oocytes (n = 624) aspirated from ovaries of slaughtered cows were classified by quality and divided in four categories according to cytoplasm appearance and cumulus cells layers. Oocytes were washed in TCM-199 supplemented with fetal bovine serum (FBS) and FSH, then distributed in maturation media (TCM-199 supplemented with FBS, FSH and gentamicin). Three experimental groups of α-tocopherol (50, 100 and 200 mM) and a control group without α-tocopherol were used. Maturation was carried 22 h at 38.5°C in a 5% CO2 atmosphere. Oocytes were examined to determine cumulus expansion as categorical data (expansion or no expansion), as well as cumulus expansion Index (CEI). For CEI determination oocytes were graded 0 to 4, being 0 those with null expansion and 4 those with a noticeable cell expansion, then the number of oocytes were multiplied by the grade given and a sum of the totals was obtained, the new total was divided by the total of oocytes in the group and the result obtained corresponded to the CEI of the group. Results were analyzed with Chi Square test (for maturation rates) and an ANOVA (for the CEI) using the SAS system, data are presented as mean ± standard error. There was no statistical difference between control and α-tocopherol groups (P >0.05). Numerically, the control group showed a higher maturation rate (100%) and obtained a higher CEI (2.44±0.20), followed by the 50 mM group (98.16%; 2.39±0.13), the groups 200 mM (97.40%; 2.00±0.14) and 100 mM (96.25%; 2.06±0.24) were the lowest. The addition of the minimum concentration (50 mM) of α-tocopherol to the maturation media could improve maturation rates without exposing oocytes to toxic effects.


Author(s):  
Kiptiyah Kiptiyah ◽  
Widodo Widodo ◽  
Gatot Ciptadi ◽  
Aulanni’am Aulanni’Am ◽  
Mohammad A. Widodo ◽  
...  

AbstractBackgroundWe investigated whether 10-gingerol is able to induce oxidative stress in cumulus cells.MethodsFor the in-vitro research, we used a cumulus cell culture in M199, containing 10-gingerol in various concentrations (0, 12, 16, and 20 µM), and detected oxidative stress through superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentrations, with incubation periods of 24, 48, 72, and 96 h. The obtained results were confirmed by in-silico studies.ResultsThe in-vitro data revealed that SOD activity and MDA concentration increased with increasing incubation periods: SOD activity at 0 µM (1.39 ± 0.24i), 12 µM (16.42 ± 0.35ab), 16 µM (17.28 ± 0.55ab), 20 µM (17.81 ± 0.12a), with a contribution of 71.1%. MDA concentration at 0 µM (17.82 ± 1.39 l), 12 µM (72.99 ± 0.31c), 16 µM (79.77 ± 4.19b), 20 µM (85.07 ± 2.57a), with a contribution of 73.1%. Based on this, the in-silico data uncovered that 10˗gingerol induces oxidative stress in cumulus cells by inhibiting HTR1A functions and inactivating GSK3B and AKT˗1.Conclusions10-gingerol induces oxidative stress in cumulus cells through enhancing SOD activity and MDA concentration by inhibiting HTR1A functions and inactivating GSK3B and AKT˗1.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1794
Author(s):  
Konstantina Stamperna ◽  
Themistoklis Giannoulis ◽  
Eleni Dovolou ◽  
Maria Kalemkeridou ◽  
Ioannis Nanas ◽  
...  

Heat shock protein 70 (HSP70) is a chaperon that stabilizes unfolded or partially folded proteins, preventing inappropriate inter- and intramolecular interactions. Here, we examined the developmental competence of in vitro matured oocytes exposed to heat stress with or without HSP70. Bovine oocytes were matured for 24 h at 39 °C without (group C39) or with HSP70 (group H39) and at 41 °C for the first 6 h, followed by 16 h at 39 °C with (group H41) or without HSP70 (group C41). After insemination, zygotes were cultured for 9 days at 39 °C. Cleavage and embryo yield were assessed 48 h post insemination and on days 7, 8, 9, respectively. Gene expression was assessed by RT-PCR in oocytes, cumulus cells and blastocysts. In C41, blastocysts formation rate was lower than in C39 and on day 9 it was lower than in H41. In oocytes, HSP70 enhanced the expression of three HSP genes regardless of incubation temperature. HSP70 at 39 °C led to tight coordination of gene expression in oocytes and blastocysts, but not in cumulus cells. Our results imply that HSP70, by preventing apoptosis, supporting signal transduction, and increasing antioxidant protection of the embryo, protects heat stressed maturing bovine oocyte and restores its developmental competence.


Author(s):  
Mohamed Omar Taqi ◽  
Mohammed Saeed-Zidane ◽  
Samuel Gebremedhn ◽  
Dessie Salilew-Wondim ◽  
Ernst Tholen ◽  
...  

AbstractTranscription factors (TFs) are known to be involved in regulating the expression of several classes of genes during folliculogenesis. However, the regulatory role of TFs during oxidative stress (OS) is not fully understood. The current study was aimed to investigate the regulation of the TFs in bovine granulosa cells (bGCs) during exposure to OS induced by H2O2 in vitro. For this, bGCs derived from ovarian follicles were cultured in vitro till their confluency and then treated with H2O2 for 40 min. Twenty-four hours later, cells were subjected to various phenotypic and gene expression analyses for genes related to TFs, endoplasmic reticulum stress, apoptosis, cell proliferation, and differentiation markers. The bGCs exhibited higher reactive oxygen species accumulation, DNA fragmentation, and endoplasmic reticulum stress accompanied by reduction of mitochondrial activity after exposure to OS. In addition, higher lipid accumulation and lower cell proliferation were noticed in H2O2-challenged cells. The mRNA level of TFs including NRF2, E2F1, KLF6, KLF9, FOS, SREBF1, SREBF2, and NOTCH1 was increased in H2O2-treated cells compared with non-treated controls. However, the expression level of KLF4 and its downstream gene, CCNB1, were downregulated in the H2O2-challenged group. Moreover, targeted inhibition of NRF2 using small interference RNA resulted in reduced expression of KLF9, FOS, SREBF2, and NOTCH1 genes, while the expression of KLF4 was upregulated. Taken together, bovine granulosa cells exposed to OS exhibited differential expression of various transcription factors, which are mediated by the NRF2 signaling pathway.


Zygote ◽  
2021 ◽  
pp. 1-5
Author(s):  
Shiori Ashibe ◽  
Kanade Irisawa ◽  
Ken Yokawa ◽  
Yoshikazu Nagao

Summary Hyaluronidase is widely used in animal and human assisted reproductive technologies (ARTs) to remove cumulus cells around oocytes. However, adverse effects of hyaluronidase treatment, such as increased rates of degeneration and parthenogenesis, have been found after treatment of human and mouse oocytes. Currently, the mechanism(s) of the detrimental effects are unclear. The present study was initiated to identify the mechanism of adverse responses to hyaluronidase treatment in bovine oocytes and early embryos. Cumulus cells were removed from cumulus–oocyte complexes (COCs) with or without hyaluronidase and the oocytes were subjected to intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF). Significantly lower rates of blastocyst formation were obtained in the hyaluronidase treatment group after ICSI (22.4%) and IVF (21.2%) compared with the non-hyaluronidase control groups: 36.1% after ICSI and 30.4% after IVF. Next, we examined the effect of hyaluronidase on parthenogenetic development rates and on the cytoplasmic levels of free calcium ions (Ca2+), reactive oxygen species (ROS) and reduced glutathione (GSH). No differences in parthenogenesis rates were found between treated and untreated groups. Ca2+ levels in oocytes from the hyaluronidase treatment group indicated using mean fluorescence intensity were significantly higher (68.8 ± 5.3) compared with in the control group (45.0 ± 2.5). No differences were found in the levels of ROS or GSH between the treated and untreated groups. We conclude that hyaluronidase might trigger an increase in Ca2+ levels in oocytes, resulting in a decreased potential for normal embryonic development.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Zhiyuan Lu ◽  
Dawei Wang ◽  
Xuming Wang ◽  
Jilong Zou ◽  
Jiabing Sun ◽  
...  

Abstract Background More and more studies have confirmed that miRNAs play an important role in maintaining bone remodeling and bone metabolism. This study investigated the expression level of miR-206 in the serum of osteoporosis (OP) patients and explored the effect and mechanism of miR-206 on the occurrence and development of osteoporosis. Methods 120 postmenopausal women were recruited, including 63 cases with OP and 57 women without OP. The levels of miR-206 were determined by qRT-PCR technology. Spearman correlation coefficient was used to evaluate the correlation of miR-206 with bone mineral density (BMD). An ROC curve was used to evaluate the diagnostic value of miR-206 in osteoporosis. The effects of miR-206 on cell proliferation and cell apoptosis of hFOBs were measured by CCK-8 assay and flow cytometry, respectively. Luciferase reporter gene assay was used to confirm the interaction of miR-206 and the 3′UTR of HDAC4. Results Serum miR-206 had low expression level in osteoporosis patient group compared with control group. The expression level of serum miR-206 had diagnostic value for osteoporosis, and the serum miR-206 levels were positively correlated with BMD. The down-regulated miR-206 could inhibit cell proliferation and promote cell apoptosis. Luciferase analysis indicated that HDAC4 was the target gene of miR-206. Conclusions MiR-206 could be used as a new potential diagnostic biomarker for osteoporosis, and in in vitro cell experiments, miR-206 may regulate osteoblast cell proliferation and apoptosis by targeting HDAC4.


Sign in / Sign up

Export Citation Format

Share Document