Mineralisation of nitrogen contained in mature subterranean clover, capeweed and annual ryegrass, and subsequent nitrogen use by wheat in dryland farming systems in southern Australia

Soil Research ◽  
2002 ◽  
Vol 40 (2) ◽  
pp. 299 ◽  
Author(s):  
R. B. Thompson ◽  
I. R. P. Fillery

Net nitrogen (N) mineralisation in soil and N uptake by wheat from mature shoots and roots of subterranean clover, capeweed, and annual ryegrass, and from clover burrs were assessed with 15N-labelled plant material in 2 field studies, using confined micro-plots. In the first study, shoot residues of the 3 species (150 g DM/m2) were placed on the soil surface, and roots of the 3 species (75 g DM/m2) were mixed into 0–10 cm soil. The treatments were applied in March 1991. The shoot residues were incorporated into soil in early June 1991. Net 15N mineralisation from the clover, capeweed, and ryegrass shoots during the 8-month experimental period was estimated to be, respectively, 15%, 12%, and 12%, and for the corresponding roots was 10%, 7%, and 6%. Negligible net mineralisation of 15N occurred during the 2.5 months that the shoot residues were on the soil surface. Crop 15N recoveries in wheat, at maturity, in November 1991 were 9%, 7%, and 7%, respectively, of that applied in the clover, capeweed, and ryegrass shoot residues. The respective crop recoveries from the root residues were 6%, 5%, and 3%. Less than 5% of N taken up by wheat was obtained from shoot or root residues. In a second similar study, 15N-labelled subterranean clover shoots (200 g DM/m2) and burrs (75 g DM/m2) were applied in December 1992; 3% of 15N in the clover shoots was net mineralised during the 5 months they were on the soil surface. Crop recoveries of 15N in October 1993, at the time of wheat anthesis, from the clover shoots and burrs were, respectively, 14% and 17% of applied 15N. The results of these field studies suggest that mature shoot residues and the associated intact roots (recoverable by wet-sieving), and clover burrs, make only a small direct contribution to the N response of cereals immediately following ley pasture in southern Australia. They also indicate that, under Mediterranean climatic conditions, generally very little net N mineralisation occurs from mature shoot residues until the shoots are incorporated into soil. pasture, shoots, roots, 15N, rotation, cereals, burr.


1997 ◽  
Vol 48 (7) ◽  
pp. 1033 ◽  
Author(s):  
R. B. Thompson ◽  
I. R. P. Fillery

Nitrogen (N) mineralisation from mature subterranean clover (Trifolium subterraneum L.) shoots and roots and from sheep urine and faeces, and N uptake by wheat from the shoots, urine, and faeces, were determined with 15 N in a field study in the Western Australian wheatbelt. Treatments were applied to the soil surface of confined micro-plots in autumn and incorporated into soil immediately before wheat was sown in winter. Mature subterranean clover shoots containing 18 kg N/ha were applied to the soil surface, and root material containing 17 kg N/ha was mixed into soil. 15N-labelled urine and faeces were obtained from housed sheep fed 15N-labelled wheat straw and grain. Urine was applied at the rates of 151 and 301 kg N/ha, and faeces was added at the rate of 47 kg N/ha. There was a loss of 14% of shoot 15N in the 2 months this residue was on the soil surface, although very little mineralisation occurred. On the assumption that wind-blow caused the initial loss of 15N, 28% of shoot N mineralised in 6 months following incorporation of shoot residues into soil, and crop recovery was 11% of the 15N applied. N mineralisation from the mature roots was 26% in 6 months. NH3 volatilisation from urine, estimated by difference, was 25% for high urine (0·517 mL/cm2) and 33% for low urine (0·258 mL/cm2) application rates, the loss occurring in the first 2 weeks. Wheat uptake was 23% of the high urine 15N and 22% of the low urine 15N. Leaching losses from unplanted micro-plots were approximately 25-30% of urine 15N. In contrast, leaching losses from planted micro-plots were estimated to be approximately 10% of urine 15N. Approximately 30% of faecal N was mineralised and recovery of faeces N by wheat was 1% of applied 15N. The relative contributions of these components to N turnover in the ley pasture wheat rotation are discussed. It is concluded that assessments of the potential turnover of N in pastures to cropping phases need to consider the low rates of N mineralisation of above-ground herbage, the potential for supply of N from the total root system, the effect of grazing on NH3volatilisation, and consequent loss of N fixed by legumes.



1977 ◽  
Vol 28 (1) ◽  
pp. 81 ◽  
Author(s):  
D Gramshaw ◽  
WR Stern

Annual ryegrass–subterranean clover pastures that produced about 5000 kg total dry weight per hectare and 23,500 ryegrass seed per sq metre in spring were grazed by sheep at different stocking rates during summer. Intensive stocking equivalent to about 3000 sheep days ha-1 reduced seed numbers by 20%. Under continuous grazing, about 70% of the seed produced in spring fell readily to the ground during summer. The remaining seed was firmly held in seed heads, and apparently sheep ate mainly this component. Less than 1% of the seed ingested was voided in the faeces. No significant changes in seed numbers over summer were observed in ungrazed pasture. Subsequently, at the break of season in autumn, germination of seeds was examined in situ near the soil surface. The summer grazing history of pastures influenced the percentage of seeds that germinated; more seeds germinated in heavily than in leniently grazed pastures. Whether the pasture was leniently or heavily grazed, there was little effect on germination of shed seeds. Seeds in seed heads were found to germinate more slowly than seeds shed to the soil surface. Seedling emergence in autumn was regulated mainly by the interrelationship between the germination rate of the seed population, depending on summer-early autumn rains, and the period for which favourable moisture conditions prevailed at the soil surface after rain began in autumn. In the field, temperature and light appeared to be unimportant in influencing germination at the break of season. Dynamics of seed and seedling numbers in annual ryegrass pastures in a Mediterranean type environment, particularly at the break of season, are discussed.



1996 ◽  
Vol 36 (5) ◽  
pp. 533 ◽  
Author(s):  
MJ Blumenthal ◽  
RL Ison

Murex medic (Medicago murex Willd.) seedling recruitment is more sensitive to soil water at the time of emergence than subterranean clover (Trifolium subterraneum L.). Murex medic pods normally lay on the soil surface. Shallow burial of pods may be beneficial when soil moisture is marginal for germination and emergence. In addition, the tightly coiled structure of murex medic pods may also act as a barrier to water uptake by the seed. Two methods of burying murex medic pods were investigated in the field: (i) trampling by sheep hooves through summer grazing; and (ii) through light cultivation in autumn. A glasshouse experiment was also conducted to examine the interaction between the length of time that the soil stays moist and pod burial for CD26 and CD53 murex medic and Dalkeith, Junee, Seaton Park and Woogenellup subterranean clover. In the glasshouse, pod burial was important for the attainment of maximum emergence in all genotypes when soil water was limiting. However, pod structure did not appear to have a limiting role in germination and emergence in murex medic. When tested in the field, pod burial by sheep trampling through summer grazing improved emergence in CD26, possibly because the smaller more open pod was more easily trampled than that of CD53. Summer grazing in CD53 and Dalkeith and autumn cultivation in all genotypes did not improve emergence; possible reasons for this are discussed so to is the role of murex medic in ley farming systems in eastern Australia.



1984 ◽  
Vol 35 (5) ◽  
pp. 645 ◽  
Author(s):  
F Forcella

A species-area curve was constructed for buried viable weed seeds in a 5-year-old subterranean clover-annual ryegrass pasture in south-eastern Australia. A soil surface area of about 200 cm2 (to a depth of 10 cm) was required to obtain a representative individual sample (i.e. a replicate) of the number of taxa in the soil seed bank, whereas a combined area of about 1000 cm2 was required for adequacy within any treatment. The total number of buried viable seeds of all species combined was distributed spatially in a more-or-less uniform manner. This suggests that a sample whose size is sufficient for determination of species diversity of buried seeds is equally adequate for measuring buried seed density.



Author(s):  
D.I. Gray ◽  
J.I. Reid ◽  
D.J. Horne

A group of 24 Hawke's Bay hill country farmers are working with service providers to improve the resilience of their farming systems. An important step in the process was to undertake an inventory of their risk management strategies. Farmers were interviewed about their farming systems and risk management strategies and the data was analysed using descriptive statistics. There was considerable variation in the strategies adopted by the farmers to cope with a dryland environment. Importantly, these strategies had to cope with three types of drought and also upside risk (better than expected conditions), and so flexibility was critical. Infra-structure was important in managing a dryland environment. Farmers chose between increased scale (increasing farm size) and geographic dispersion (owning a second property in another location) through to intensification (investing in subdivision, drainage, capital fertiliser, new pasture species). The study identified that there may be scope for further investment in infra-structural elements such as drainage, deeper rooting alternative pasture species and water harvesting, along with improved management of subterranean clover to improve flexibility. Many of the farmers used forage crops and idling capacity (reduced stocking rate) to improve flexibility; others argued that maintaining pasture quality and managing upside risk was a better strategy in a dryland environment. Supplementary feed was an important strategy for some farmers, but its use was limited by contour and machinery constraints. A surprisingly large proportion of farmers run breeding cows, a policy that is much less flexible than trading stock. However, several farmers had improved their flexibility by running a high proportion of trading cattle and buffer mobs of ewe hoggets and trade lambs. To manage market risk, the majority of farmers are selling a large proportion of their lambs prime. Similarly, cattle are either sold prime or store onto the grass market when prices are at a premium. However, market risk associated with the purchase of supplements and grazing was poorly managed.



Author(s):  
О. V. Levakova ◽  
L. М. Eroshenko ◽  
А. N. Eroshenko

The article presents and analyzes data of competitive varietal testing of promising varieties and lines of spring barley for yield and brewing qualities. Field studies were conducted in 2014–2017 on dark gray forest heavy loam soil. Agrochemical parameters are total nitrogen – 0.24%, humus content in a layer of 0-40 cm (according to Tyurin) – 5.19%, hydrolysis nitrogen – 123.5 mg / kg, salt extract pH – 4.92 mg-eq / 100g; labile phosphorus - 34.6 mg / 100g, labile potassium – 20.0 mg / 100g. The forerunner is winter wheat. Meteorological conditions in the years of research differed from each other and from the average long-term value. Barley samples were assessed by the protein content in the grain (GOST 10846-91), extract content (GOST 12130-77), weight 1000 grains (GOST 10842-89). Ecological plasticity was determined by the method proposed by E.D. Nettevich, A.I. Morgunov and M.I. Maksimenko, stability index (Ľ) by A. A. Gryaznov, indicator of stability level (Puss) by E. D. Nettevich and A. I. Morgunov. The main measure for assessing quality indicators is protein content. Many other biochemical and technological features of grain depend on its level. The experimental data convincingly testify to the significant influence of the soil and climatic conditions on the yield and, especially, on the brewing qualities of barley in the conditions of the Central Region of the Nonchernozem Zone. According to the studied traits, new valuable varieties Nadezhny, Sir, Noble and selection lines 141 / 1-09 h 746, 23 / 1-10 h 784, distinguished by high adaptability and resistance to adverse environmental factors, have been identified.



The farming system in West Bengal is being shifted by integration between the set of cash crops and the main food harvest process. This change in diversified farming systems, where smallholders have a production base in rice can complement production; affect technical efficiency and farm performance. The goal of this study was to investigate the status of crop diversification on smallholders in West Bengal. First, crop diversification regions were developed in West Bengal based on the Herfindahl index, which were categorized into three regions. Three sample districts were studied separately at the block level, and 915 small farmers from 41 sample villages of 9 sample blocks were interviewed through a good structure questionnaire for field studies from the sample districts. West Bengal was gradually moving towards multiple crop production. Furthermore, increasing rice production reduced the marginal use of inputs for the production of other crops. Farming and other vital factors such as HYVs area to GCA, average holding size and per capita income in some districts of West Bengal can be identified as determinants of crop diversification.



2021 ◽  
Vol 11 (7) ◽  
pp. 2979
Author(s):  
Maxime Fortin Faubert ◽  
Dominic Desjardins ◽  
Mohamed Hijri ◽  
Michel Labrecque

The Salix genus includes shrub species that are widely used in phytoremediation and various other phytotechnologies due to their advantageous characteristics, such as a high evapotranspiration (ET) rate, in particular when cultivated in short rotation intensive culture (SRIC). Observations made in past field studies suggest that ET and its impact on soil hydrology can also lead to increases in soil pollutant concentrations near shrubs. To investigate this, sections of a mature willow plantation (seven years old) were cut to eliminate transpiration (Cut treatment). Soil concentrations of polychlorinated biphenyls (PCBs), aliphatic compounds C10–C50, polycyclic aromatic hydrocarbons (PAHs) and five trace elements (Cd, Cr, Cu, Ni and Zn) were compared between the Cut and the uncut plots (Salix miyabeana ‘SX61’). Over 24 months, the results clearly show that removal of the willow shrubs limited the contaminants’ increase in the soil surface, as observed for C10–C50 and of 10 PAHs under the Salix treatment. This finding strongly reinforces a hypothesis that SRIC of willows may facilitate the migration of contaminants towards their roots, thus increasing their concentration in the surrounding soil. Such a “pumping effect” in a high-density willow crop is a prominent characteristic specific to field studies that can lead to counterintuitive results. Although apparent increases of contaminant concentrations contradict the purification benefits usually pursued in phytoremediation, the possibility of active phytoextraction and rhizodegradation is not excluded. Moreover, increases of pollutant concentrations under shrubs following migration suggest that decreases would consequently occur at the source points. Some reflections on interpreting field work results are provided.



2000 ◽  
Vol 51 (3) ◽  
pp. 377 ◽  
Author(s):  
G. M. Lodge

Seedlings of 3 perennial grasses, Danthonia linkii Kunthcv. Bunderra, D. richardsonii Cashmore cv. Taranna(wallaby grasses), and Phalaris aquatica L. cv. Sirosa,were each grown in replacement series mixtures with seedlings ofTrifolium repens L. (white clover),Trifolium subterraneum L. var. brachycalycinum (Katzn.et Morley) Zorahy & Heller cv. Clare (subterraneanclover), and Lolium rigidum L. (annual ryegrass). Plantswere sown 5 cm apart in boxes (45 by 29 by 20 cm) at a density of 307plants/m2. Maximum likelihood estimates were usedto derive parameters of a non-linear competition model using the dry matterweights of perennial grasses and competitors at 3 harvests, approximately 168,216, and 271 days after sowing. Intra-plant competition was examined inmonocultures of each species, grown at plant spacings of 2, 5, and 8 cm apartwith plants harvested at the above times.Competition occurred in all perennial grass–competitor mixtures, exceptin those of each perennial grass with white clover and thephalaris–subterranean clover mixture (Harvest 1) and those withD. richardsonii and phalaris grown with white clover(Harvest 2). For D. richardsonii (Harvests 1 and 2) andD. linkii (Harvest 1 only) grown with white clover andthe phalaris–subterranean clover (Harvest 1), the two species in themixture were not competing. In the phalaris–white clover mixture, eachspecies was equally competitive (Harvests 1 and 2). These differences incompetition and aggressiveness reflected differences in individual plantweights in monocultures where there was an effect (P < 0.05) of species ondry matter weight per box, but no significant effect of plant spacing.These data indicated that for successful establishment,D. richardsonii and D. linkiishould not be sown in swards with either subterranean clover or white clover,or where populations of annual ryegrass seedlings are likely to be high.Phalaris was more compatible with both white clover and subterranean clover,but aggressively competed with by annual ryegrass.



1986 ◽  
Vol 26 (6) ◽  
pp. 681 ◽  
Author(s):  
A Pinkerton ◽  
JR Simpson

Previous studies on soils from old pastures in southern New South Wales have demonstrated that nutrients have accumulated at the soil surface, but that the 40-100-mm depth layer in many profiles has become strongly acidic (e.g. pH 4.7), and high in extractable aluminium. Poor growth of subterranean clover has occurred on such soils during dry periods and may be associated with poor root growth in the acidic, nutrient-poor subsurface layers. Possible nutritional causes of these observations were investigated using reconstituted soil profiles. The root and shoot growth of subterranean clover, wheat, oats and lucerne were compared in unamended profiles and in profiles amended by applying nutrients or calcium carbonate (lime) to correct the more obvious deficiencies of the subsurface layers. Subterranean clover grew well as long as the surface soil remained moist, so that plants could utilise the nutrients potentially available within it. When the surface (0-40 mm) was allowed to dry but the subsurface layers remained moist, growth was poor unless phosphate was applied to the moist layer. Subsurface application of lime alone was ineffective. Nitrogen application increased clover growth in the presence of added phosphate or surface moisture, but nitrogen alone did little to alleviate the effects of surface drought. Wheat, and to a lesser extent oats, responded to subsurface lime when the surface was moist, and both responded to subsurface phosphate when the surface was dry. Lucerne responded to subsurface phosphate similarly to subterranean clover but the response was more than doubled in the presence of additional borate and lime. Lime without borate was not effective. When the surface was maintained moist, liming both the surface (0-40 mm) and subsurface layers improved the response over liming the subsurface layer only. The results suggest that declining fertility and productivity in old pastures developed on acid soils may not be rectified by liming alone, but that cultivation, ripping or drilling of phosphate, and in some cases addition of borate, may be required to improve the penetration of nutrients, particularly phosphorus, to greater depth.



Sign in / Sign up

Export Citation Format

Share Document