scholarly journals Nascent RNA sequencing reveals distinct features in plant transcription

2016 ◽  
Vol 113 (43) ◽  
pp. 12316-12321 ◽  
Author(s):  
Jonathan Hetzel ◽  
Sascha H. Duttke ◽  
Christopher Benner ◽  
Joanne Chory

Transcriptional regulation of gene expression is a major mechanism used by plants to confer phenotypic plasticity, and yet compared with other eukaryotes or bacteria, little is known about the design principles. We generated an extensive catalog of nascent and steady-state transcripts inArabidopsis thalianaseedlings using global nuclear run-on sequencing (GRO-seq), 5′GRO-seq, and RNA-seq and reanalyzed published maize data to capture characteristics of plant transcription. De novo annotation of nascent transcripts accurately mapped start sites and unstable transcripts. Examining the promoters of coding and noncoding transcripts identified comparable chromatin signatures, a conserved “TGT” core promoter motif and unreported transcription factor-binding sites. Mapping of engaged RNA polymerases showed a lack of enhancer RNAs, promoter-proximal pausing, and divergent transcription inArabidopsisseedlings and maize, which are commonly present in yeast and humans. In contrast,Arabidopsisand maize genes accumulate RNA polymerases in proximity of the polyadenylation site, a trend that coincided with longer genes and CpG hypomethylation. Lack of promoter-proximal pausing and a higher correlation of nascent and steady-state transcripts indicateArabidopsismay regulate transcription predominantly at the level of initiation. Our findings provide insight into plant transcription and eukaryotic gene expression as a whole.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lionel Condé ◽  
Yulemi Gonzalez Quesada ◽  
Florence Bonnet-Magnaval ◽  
Rémy Beaujois ◽  
Luc DesGroseillers

AbstractBackgroundStaufen2 (STAU2) is an RNA binding protein involved in the posttranscriptional regulation of gene expression. In neurons, STAU2 is required to maintain the balance between differentiation and proliferation of neural stem cells through asymmetric cell division. However, the importance of controlling STAU2 expression for cell cycle progression is not clear in non-neuronal dividing cells. We recently showed that STAU2 transcription is inhibited in response to DNA-damage due to E2F1 displacement from theSTAU2gene promoter. We now study the regulation of STAU2 steady-state levels in unstressed cells and its consequence for cell proliferation.ResultsCRISPR/Cas9-mediated and RNAi-dependent STAU2 depletion in the non-transformed hTERT-RPE1 cells both facilitate cell proliferation suggesting that STAU2 expression influences pathway(s) linked to cell cycle controls. Such effects are not observed in the CRISPR STAU2-KO cancer HCT116 cells nor in the STAU2-RNAi-depleted HeLa cells. Interestingly, a physiological decrease in the steady-state level of STAU2 is controlled by caspases. This effect of peptidases is counterbalanced by the activity of the CHK1 pathway suggesting that STAU2 partial degradation/stabilization fines tune cell cycle progression in unstressed cells. A large-scale proteomic analysis using STAU2/biotinylase fusion protein identifies known STAU2 interactors involved in RNA translation, localization, splicing, or decay confirming the role of STAU2 in the posttranscriptional regulation of gene expression. In addition, several proteins found in the nucleolus, including proteins of the ribosome biogenesis pathway and of the DNA damage response, are found in close proximity to STAU2. Strikingly, many of these proteins are linked to the kinase CHK1 pathway, reinforcing the link between STAU2 functions and the CHK1 pathway. Indeed, inhibition of the CHK1 pathway for 4 h dissociates STAU2 from proteins involved in translation and RNA metabolism.ConclusionsThese results indicate that STAU2 is involved in pathway(s) that control(s) cell proliferation, likely via mechanisms of posttranscriptional regulation, ribonucleoprotein complex assembly, genome integrity and/or checkpoint controls. The mechanism by which STAU2 regulates cell growth likely involves caspases and the kinase CHK1 pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Suresh Kumar ◽  
Trilochan Mohapatra

Epigenetic modifications in DNA bases and histone proteins play important roles in the regulation of gene expression and genome stability. Chemical modification of DNA base (e.g., addition of a methyl group at the fifth carbon of cytosine residue) switches on/off the gene expression during developmental process and environmental stresses. The dynamics of DNA base methylation depends mainly on the activities of the writer/eraser guided by non-coding RNA (ncRNA) and regulated by the developmental/environmental cues. De novo DNA methylation and active demethylation activities control the methylation level and regulate the gene expression. Identification of ncRNA involved in de novo DNA methylation, increased DNA methylation proteins guiding DNA demethylase, and methylation monitoring sequence that helps maintaining a balance between DNA methylation and demethylation is the recent developments that may resolve some of the enigmas. Such discoveries provide a better understanding of the dynamics/functions of DNA base methylation and epigenetic regulation of growth, development, and stress tolerance in crop plants. Identification of epigenetic pathways in animals, their existence/orthologs in plants, and functional validation might improve future strategies for epigenome editing toward climate-resilient, sustainable agriculture in this era of global climate change. The present review discusses the dynamics of DNA methylation (cytosine/adenine) in plants, its functions in regulating gene expression under abiotic/biotic stresses, developmental processes, and genome stability.


2018 ◽  
Author(s):  
Xiaofeng Xu ◽  
Haishuo Ji ◽  
Zhi Cheng ◽  
Xiufeng Jin ◽  
Xue Yao ◽  
...  

AbstractIn this study, we used pan RNA-seq analysis to reveal the ubiquitous existence of 5’ end and 3’ end small RNAs. 5’ and 3’ sRNAs alone can be used to annotate mitochondrial with 1-bp resolution and nuclear non-coding genes and identify new steady-state RNAs, which are usually from functional genes. Using 5’, 3’ and intronic sRNAs, we revealed that the enzymatic dsRNA cleavage and RNAi could involve in the RNA degradation and gene expression regulation of U1 snRNA in human. The further study of 5’, 3’ and intronic sRNAs help rediscover double-stranded RNA (dsRNA) cleavage, RNA interference (RNAi) and the regulation of gene expression, which challenges the classical theories. In this study, we provided a simple and cost effective way for the annotation of mitochondrial and nuclear non-coding genes and the identification of new steady-state RNAs, particularly long non-coding RNAs (lncRNAs). We also provided a different point of view for cancer and virus, based on the new discoveries of dsRNA cleavage, RNAi and the regulation of gene expression.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Simone Balzer Le ◽  
Ingerid Onsager ◽  
Jon Andreas Lorentzen ◽  
Rahmi Lale

Abstract Bacterial 5′ untranslated regions of mRNA (UTR) involve in a complex regulation of gene expression; however, the exact sequence features contributing to gene regulation are not yet fully understood. In this study, we report the design of a novel 5′ UTR, dual UTR, utilizing the transcriptional and translational characteristics of 5′ UTRs in a single expression cassette. The dual UTR consists of two 5′ UTRs, each separately leading to either increase in transcription or translation of the reporter, that are separated by a spacer region, enabling de novo translation initiation. We rationally create dual UTRs with a wide range of expression profiles and demonstrate the functionality of the novel design concept in Escherichia coli and Pseudomonas putida using different promoter systems and coding sequences. Overall, we demonstrate the application potential of dual UTR design concept in various synthetic biology applications ranging from fine-tuning of gene expression to maximization of protein production.


2008 ◽  
Vol 36 (4) ◽  
pp. 708-711 ◽  
Author(s):  
Laura Smith

Post-transcriptional regulation, via 5′-UTRs (5′-untranslated regions), plays an important role in the control of eukaryotic gene expression. Recent analyses of the mammalian transcriptome suggest that most of the genes express multiple alternative 5′-UTRs and inappropriate expression of these regions has been shown to contribute to the development of carcinogenesis. The present review will focus on the complex post-transcriptional regulation of ERβ (oestrogen receptor β) expression. In particular, results from our laboratory suggest that the expression of alternative 5′-UTRs plays a key role in determining the level of ERβ protein expression. We have also shown that these alternative ERβ 5′-UTRs have a tissue-specific distribution and are differentially expressed between various normal and tumour tissues. Our results also suggest that alternative 5′-UTRs can influence downstream splicing events, thereby perhaps affecting ERβ function. These results suggest that alternative 5′-UTRs may have an overall influence on ER activity and this may have important implications for our understanding of cancer biology and treatment.


2014 ◽  
Vol 289 (17) ◽  
pp. 11993-12004 ◽  
Author(s):  
Yonathan Zehavi ◽  
Olga Kuznetsov ◽  
Avital Ovadia-Shochat ◽  
Tamar Juven-Gershon

Blood ◽  
2002 ◽  
Vol 100 (9) ◽  
pp. 3077-3086 ◽  
Author(s):  
Qiliang Li ◽  
Kenneth R. Peterson ◽  
Xiangdong Fang ◽  
George Stamatoyannopoulos

Abstract Locus control regions (LCRs) are operationally defined by their ability to enhance the expression of linked genes to physiological levels in a tissue-specific and copy number–dependent manner at ectopic chromatin sites. Although their composition and locations relative to their cognate genes are different, LCRs have been described in a broad spectrum of mammalian gene systems, suggesting that they play an important role in the control of eukaryotic gene expression. The discovery of the LCR in the β-globin locus and the characterization of LCRs in other loci reinforces the concept that developmental and cell lineage–specific regulation of gene expression relies not on gene-proximal elements such as promoters, enhancers, and silencers exclusively, but also on long-range interactions of variouscis regulatory elements and dynamic chromatin alterations.


Sign in / Sign up

Export Citation Format

Share Document