scholarly journals Protein 4.1G Regulates Cell Adhesion, Spreading, and Migration of Mouse Embryonic Fibroblasts through the β1 Integrin Pathway

2015 ◽  
Vol 291 (5) ◽  
pp. 2170-2180 ◽  
Author(s):  
Lixiang Chen ◽  
Ting Wang ◽  
Yaomei Wang ◽  
Jingxin Zhang ◽  
Yuanming Qi ◽  
...  
1999 ◽  
Vol 77 (5) ◽  
pp. 409-420 ◽  
Author(s):  
Dolores Hangan-Steinman ◽  
Wai-chi Ho ◽  
Priti Shenoy ◽  
Bosco MC Chan ◽  
Vincent L Morris

It is well established that a biphasic relationship exists between the adhesive strength of β1 integrins and their ability to mediate cell movement. Thus, cell movement increases progressively with adhesive strength, but beyond a certain point of optimal interaction, cell movement is reduced with further increases in adhesive function. The interplay between the various kinase and phosphatase activities provides the balance in β1 integrin-mediated cell adhesion and migration. In the present study, the significance of protein tyrosine phosphatases (PTP) and ser/thr protein phosphatases (PP) in α4β1 and α5β1 integrin-mediated mouse melanoma B16F1 cell anchorage and migration on fibronectin was characterized using phosphatase inhibitors. At low fibronectin concentration, α5β1 functioned as the predominant receptor for cell movement; a role for α4β1 in B16F1 cell migration increased progressively with fibronectin concentration. Treatment of B16F1 cells with PTP inhibitors, sodium orthovanadate (Na3VO4) and phenylarsine oxide (PAO), or PP-1/2A inhibitor, okadaic acid (OA), abolished cell movement. Inhibition of cell movement by PAO and OA was associated by a reduction in the adhesive strength of α4β1 and α5β1. In contrast, treatment of B16F1 cells with Na3VO4 resulted in selective stimulation of the adhesive function of α5β1, but not α4β1. Therefore, our results demonstrate that (i) both PTP and PP-1/2A have roles in cell movement, (ii) modulation of cell movement by PTP and PP-1/2A may involve either a stimulation or reduction of β1 integrin adhesive strength, and (iii) distinct phosphatase-mediated signaling pathways for differential regulation of the various β1 integrins exist. Key words: phosphatases, integrins, cell movement, cell adhesion.


2008 ◽  
Vol 180 (2) ◽  
pp. 427-441 ◽  
Author(s):  
Angélique Millon-Frémillon ◽  
Daniel Bouvard ◽  
Alexei Grichine ◽  
Sandra Manet-Dupé ◽  
Marc R. Block ◽  
...  

Cell migration is an integrated process requiring the continuous coordinated assembly and disassembly of adhesion structures. How cells orchestrate adhesion turnover is only partially understood. We provide evidence for a novel mechanistic insight into focal adhesion (FA) dynamics by demonstrating that integrin cytoplasmic domain–associated protein 1 (ICAP-1) slows down FA assembly. Live cell imaging, which was performed in both Icap-1–deficient mouse embryonic fibroblasts and cells expressing active β1 integrin, shows that the integrin high affinity state favored by talin is antagonistically controlled by ICAP-1. This affinity switch results in modulation in the speed of FA assembly and, consequently, of cell spreading and migration. Unexpectedly, the ICAP-1–dependent decrease in integrin affinity allows cell sensing of matrix surface density, suggesting that integrin conformational changes are important in mechanotransduction. Our results clarify the function of ICAP-1 in cell adhesion and highlight the central role it plays in the cell's integrated response to the extracellular microenvironment.


mSystems ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Kiran Bala Sharma ◽  
Manish Sharma ◽  
Suruchi Aggarwal ◽  
Amit Kumar Yadav ◽  
Shinjini Bhatnagar ◽  
...  

ABSTRACT Basal autophagy is crucial for maintenance of cellular homeostasis. ATG5 is an essential protein for autophagosome formation, and its depletion has been extensively used as a tool to disrupt autophagy. Here, we characterize the impact of Atg5 deficiency on the cellular proteome of mouse embryonic fibroblasts (MEFs). Using a tandem mass tagging (TMT)-based quantitative proteomics analysis, we observe that 14% of identified proteins show dysregulated levels in atg5−/− MEFs. These proteins were distributed across diverse biological processes, such as cell adhesion, development, differentiation, transport, metabolism, and immune responses. Several of the upregulated proteins were receptors involved in transforming growth factor β (TGF-β) signaling, JAK-STAT signaling, junction adhesion, and interferon/cytokine-receptor interactions and were validated as autophagy substrates. Nearly equal numbers of proteins, including several lysosomal proteins and enzymes, were downregulated, suggesting a complex role of autophagy/ATG5 in regulating their levels. The atg5−/− MEFs had lower levels of key immune sensors and effectors, including Toll-like receptor 2 (TLR2), interferon regulatory factor 3 (IRF3), IRF7, MLKL, and STAT1/3/5/6, which were restored by reexpression of ATG5. While these cells could efficiently mount a type I interferon response to the double-stranded RNA (dsRNA) mimic poly(I·C), they were compromised in their inflammatory response to the bacterial pathogen-associated molecular patterns (PAMPs) lipopolysaccharide (LPS) and Pam3CSK4. Transcriptional activation and secretion of interleukin-6 (IL-6) in these cells could be recovered by ATG5 expression, supporting the role of autophagy in the TLR2-induced inflammatory response. This study provides a key resource for understanding the effect of autophagy/ATG5 deficiency on the fibroblast proteome. IMPORTANCE Autophagy performs housekeeping functions for cells and maintains a functional mode by degrading damaged proteins and organelles and providing energy under starvation conditions. The process is tightly regulated by the evolutionarily conserved Atg genes, of which Atg5 is one such crucial mediator. Here, we have done a comprehensive quantitative proteome analysis of mouse embryonic fibroblasts that lack a functional autophagy pathway (Atg5 knockout). We observe that 14% of the identified cellular proteome is remodeled, and several proteins distributed across diverse cellular processes with functions in signaling, cell adhesion, development, and immunity show either higher or lower levels under autophagy-deficient conditions. These cells have lower levels of crucial immune proteins that are required to mount a protective inflammatory response. This study will serve as a valuable resource to determine the role of autophagy in modulating specific protein levels in cells.


2015 ◽  
Vol 231 (5) ◽  
pp. 1142-1150 ◽  
Author(s):  
Yinfei Tan ◽  
Xiaoban Xin ◽  
Francis J. Coffey ◽  
David L. Wiest ◽  
Lily Q. Dong ◽  
...  

2014 ◽  
Vol 459 (3) ◽  
pp. 565-576 ◽  
Author(s):  
Soo Youn Lee ◽  
Jung Mi Kim ◽  
Soo Young Cho ◽  
Hyun Suk Kim ◽  
Hee Sun Shin ◽  
...  

Human neural stem cells possess an inherent brain tumour tropism. We identified brain tumour-derived TIMP-1 as a novel chemoattractant for human neural stem cells. TIMP-1 binding to CD63 at the plasma membrane activated β1 integrin-mediated signalling, inducing cell adhesion and migration.


Blood ◽  
2002 ◽  
Vol 99 (7) ◽  
pp. 2351-2359 ◽  
Author(s):  
Wen-Mei Yu ◽  
Teresa S. Hawley ◽  
Robert G. Hawley ◽  
Cheng-Kui Qu

Gab2, a newly identified pleckstrin homology domain-containing docking protein, is a major binding protein of SHP-2 tyrosine phosphatase in interleukin (IL)-3–stimulated hematopoietic cells. Its signaling mechanism remains largely unknown. We report here an important regulatory role for Gab2 in β1 integrin signaling pathway that mediates hematopoietic cell adhesion and migration. Cross-linking of the β1 integrin on Ba/F3 cells induced rapid tyrosine phosphorylation of Gab2 and its association with Syk kinase, SHP-2 phosphatase, and the p85 subunit of phosphatidylinositol (PI)-3 kinase. In addition, Gab2 was also constitutively associated with SHP-1 phosphatase via its C-terminal Src homology 2 domain. Overexpression of the pleckstrin homology domain or a mutant Gab2 molecule lacking SHP-2 binding sites resulted in significant reductions in Ba/F3 cell adhesion and migration. Biochemical analyses revealed that enforced expression of Gab2 mutant molecules dramatically reduced β1-integrin ligation-triggered PI3 kinase activation, whereas Erk kinase activation remained unaltered. Furthermore, transduction of primary hematopoietic progenitor cells from viable motheaten mice with these mutant Gab2 molecules also significantly ameliorated their enhanced migration capacity associated with theSHP1 gene mutation. Taken together, these results suggest an important signaling role for Gab2 in regulating hematopoietic cell adhesion and migration.


1999 ◽  
Vol 10 (9) ◽  
pp. 2861-2878 ◽  
Author(s):  
Margaret A. Adelsman ◽  
James B. McCarthy ◽  
Yoji Shimizu

Integrins and growth factor receptors are important participants in cellular adhesion and migration. The EGF receptor (EGFR) family of tyrosine kinases and the β1-integrin adhesion receptors are of particular interest, given the implication for their involvement in the initiation and progression of tumorigenesis. We used adhesion and chemotaxis assays to further elucidate the relationship between these two families of transmembrane signaling molecules. Specifically, we examined integrin-mediated adhesive and migratory characteristics of the metastatic breast carcinoma cell line MDA-MB-435 in response to stimulation with growth factors that bind to and activate the EGFR or erbB3 in these cells. Although ligand engagement of the EGFR stimulated modest β1-dependent increases in cell adhesion and motility, heregulin-β (HRGβ) binding to the erbB3 receptor initiated rapid and potent induction of breast carcinoma cell adhesion and migration and required dimerization of erbB3 with erbB2. Pharmacologic inhibitors of phosphoinositide 3-OH kinase (PI 3-K) or transient expression of dominant negative forms of PI 3-K inhibited both EGF- and HRGβ-mediated adhesion and potently blocked HRGβ- and EGF-induced cell motility. Our results illustrate the critical role of PI 3-K activity in signaling pathways initiated by the EGFR or erbB3 to up-regulate β1-integrin function.


Sign in / Sign up

Export Citation Format

Share Document