scholarly journals LY6D-induced macropinocytosis as a survival mechanism of senescent cells

2020 ◽  
pp. jbc.RA120.013500
Author(s):  
Taiki Nagano ◽  
Tetsushi Iwasaki ◽  
Kengo Onishi ◽  
Yuto Awai ◽  
Anju Terachi ◽  
...  

Although senescent cells display various morphological changes including vacuole formation, it is still unclear how these processes are regulated. We have recently identified the gene, lymphocyte antigen 6 complex, locus D (LY6D), to be upregulated specifically in senescent cells. LY6D is a glycosylphosphatidylinositol (GPI)-anchored cell surface protein whose function remains unknown. Here, we analyzed the functional relationship between LY6D and the senescence processes. We found that overexpression of LY6D induced vacuole formation, and knockdown of LY6D suppressed the senescence-associated vacuole formation. The LY6D-induced vacuoles were derived from macropinocytosis, a distinct form of endocytosis. Furthermore, Src family kinases and Ras were found to be recruited to membrane lipid rafts in an LY6D-dependent manner, and inhibition of their activity impaired the LY6D-induced macropinocytosis. Finally, reduction of senescent cell survival induced by glutamine deprivation was recovered by albumin supplementation to the culture media in an LY6D-dependent manner. Since macropinocytosis acts as an amino acid supply route, these results suggest that LY6D-mediated macropinocytosis contributes to senescent cell survival through the incorporation of extracellular nutrients.

2014 ◽  
Vol 26 (7) ◽  
pp. 943 ◽  
Author(s):  
Catherine N. Sargus-Patino ◽  
Elane C. Wright ◽  
Sarah A. Plautz ◽  
Jeremy R. Miles ◽  
Jeff L. Vallet ◽  
...  

Between Days 10 and 12 of gestation, porcine embryos undergo a dramatic morphological change, known as elongation, with a corresponding increase in oestrogen production that triggers maternal recognition of pregnancy. Elongation deficiencies contribute to embryonic loss, but exact mechanisms of elongation are poorly understood due to the lack of an effective in vitro culture system. Our objective was to use alginate hydrogels as three-dimensional scaffolds that can mechanically support the in vitro development of preimplantation porcine embryos. White cross-bred gilts were bred at oestrus (Day 0) to Duroc boars and embryos were recovered on Days 9, 10 or 11 of gestation. Spherical embryos were randomly assigned to be encapsulated within double-layered 0.7% alginate beads or remain as non-encapsulated controls (ENC and CONT treatment groups, respectively) and were cultured for 96 h. Every 24 h, half the medium was replaced with fresh medium and an image of each embryo was recorded. At the termination of culture, embryo images were used to assess morphological changes and cell survival. 17β-Oestradiol levels were measured in the removed media by radioimmunoassay. Real-time polymerase chain reaction was used to analyse steroidogenic transcript expression at 96 h in ENC and CONT embryos, as well as in vivo-developed control embryos (i.e. spherical, ovoid and tubular). Although no differences in cell survival were observed, 32% (P < 0.001) of the surviving ENC embryos underwent morphological changes characterised by tubal formation with subsequent flattening, whereas none of the CONT embryos exhibited morphological changes. Expression of steroidogenic transcripts STAR, CYP11A1 and CYP19A1 was greater (P < 0.07) in ENC embryos with morphological changes (ENC+) compared with CONT embryos and ENC embryos with no morphological changes (ENC–), and was more similar to expression of later-stage in vivo-developed controls. Furthermore, a time-dependent increase (P < 0.001) in 17β-oestradiol was observed in culture media from ENC+ compared with ENC– and CONT embryos. These results illustrate that preimplantation pig embryos encapsulated in alginate hydrogels can undergo morphological changes with increased expression of steroidogenic transcripts and oestrogen production, consistent with in vivo-developed embryos. This alginate culture system can serve as a tool for evaluating specific mechanisms of embryo elongation that could be targeted to improve pregnancy outcomes.


1999 ◽  
Vol 82 (11) ◽  
pp. 1497-1503 ◽  
Author(s):  
Hajime Tsuji ◽  
Hiromi Nishimura ◽  
Haruchika Masuda ◽  
Yasushi Kunieda ◽  
Hidehiko Kawano ◽  
...  

SummaryIn the present study, we demonstrate that brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) interact with angiotensin II (Ang II) in regulative blood coagulation and fibrinolysis by suppressing the expressions of both tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) induced by Ang II. The expressions of TF and PAI-1 mRNA were analyzed by northern blotting methods, and the activities of TF on the surface of rat aortic endothelial cells (RAECs) and PAI-1 in the culture media were respectively measured by chromogenic assay.Both BNP and CNP suppressed the expressions of TF and PAI-1 mRNA induced by Ang II in a time- and concentration-dependent manner via cGMP cascade, which suppressions were accompanied by respective decrease in activities of TF and PAI-1. However, neither the expression of tissue factor pathway inhibitor (TFPI) nor tissue-type plasminogen activator (TPA) mRNA was affected by the treatment of BNP and CNP.


Toxins ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 237
Author(s):  
András Szabó ◽  
Szabolcs Nagy ◽  
Omeralfaroug Ali ◽  
Zsolt Gerencsér ◽  
Miklós Mézes ◽  
...  

A 65-day study was undertaken to test the effects of two doses (10 and 20 mg/kg) of dietary fumonisin Bs (FB) on the rabbit male reproduction system. Body and testicular weight was not affected by the intoxication, neither the fatty acid composition of the testicular total phospholipids; the testis histological analysis failed to reveal any toxic effect. The FBs increased the testicular concentration and activity of reduced glutathione and glutathione peroxidase and decreased initial phase lipid peroxidation (conjugated dienes and trienes) in a dose dependent manner. Sperm morphology and chromatin condensation were monitored on Feulgen-stained smears. No significant differences were observed between the treatment groups and between sampling time points. The live cell ratio in the sperm (as assessed with flow cytometry) was not different among groups at any of the five sampling timepoints and was also identical within groups. Similarly, the spermatozoa membrane lipid profile was also identical in all three groups after the total intoxication period. In summary, it was demonstrated that FBs in an unrealistic and unjustified high dose still do not exert any drastic harmful effect on the leporine, male reproduction system, meanwhile slightly augmenting testicular antioxidant response.


1996 ◽  
Vol 84 (5) ◽  
pp. 831-838 ◽  
Author(s):  
Xiao-Nan Li ◽  
Zi-Wei Du ◽  
Qiang Huang

✓ The modulation effects of hexamethylene bisacetamide (HMBA), a differentiation-inducing agent, on growth and differentiation of cells from human malignant glioma cell line SHG-44 were studied. At cytostatic doses (2.5 mM, 5 mM, 7.5 mM, and 10 mM for 15 days), HMBA exerted a marked inhibitory effect on cell proliferation. Exposure to HMBA (5 mM and 10 mM for 12 days) also resulted in an accumulation of cells in G0/G1 phase and a decrease of cells in S phase as analyzed by flow cytometry. The reversible effects of 7.5 mM HMBA and 10 mM HMBA on cell proliferation and 10 mM HMBA on disruption of cell cycle distribution were observed when HMBA was removed from culture media on Day 6 and replaced with HMBA-free media. Colony-forming efficiency (CFE) in soft agar was remarkably decreased by HMBA (2.5 mM, 5 mM, 7.5 mM, and 10 mM for 14 days), and in 7.5 mM HMBA— and 10 mM HMBA—treated cells, the CFEs were reduced to 25% and 12.5%, respectively, of that in untreated cells. Cells treated with HMBA (5 mM and 10 mM for 15 days) remained tumorigenic in athymic nude mice, but the growth rates of the xenografts were much slower than those in the control group. The effects of HMBA on cell proliferation, cell cycle distribution, CFE, and growth of xenografts were dose dependent. A more mature phenotype was confirmed by the morphological changes from spindle shape to large polygonal stellate shape and remarkably elevated expression of glial fibrillary acidic protein in cells exposed to HMBA (5 mM, 10 mM for 15 days). Our results showed that a more differentiated phenotype with marked growth arrest was induced in SHG-44 cells by HMBA.


2021 ◽  
Vol 22 (2) ◽  
pp. 817
Author(s):  
Junfang Yan ◽  
Yi Xie ◽  
Jing Si ◽  
Lu Gan ◽  
Hongyan Li ◽  
...  

Cell can integrate the caspase family and mammalian target of rapamycin (mTOR) signaling in response to cellular stress triggered by environment. It is necessary here to elucidate the direct response and interaction mechanism between the two signaling pathways in regulating cell survival and determining cell fate under cellular stress. Members of the caspase family are crucial regulators of inflammation, endoplasmic reticulum stress response and apoptosis. mTOR signaling is known to mediate cell growth, nutrition and metabolism. For instance, over-nutrition can cause the hyperactivation of mTOR signaling, which is associated with diabetes. Nutrition deprivation can inhibit mTOR signaling via SH3 domain-binding protein 4. It is striking that Ras GTPase-activating protein 1 is found to mediate cell survival in a caspase-dependent manner against increasing cellular stress, which describes a new model of apoptosis. The components of mTOR signaling-raptor can be cleaved by caspases to control cell growth. In addition, mTOR is identified to coordinate the defense process of the immune system by suppressing the vitality of caspase-1 or regulating other interferon regulatory factors. The present review discusses the roles of the caspase family or mTOR pathway against cellular stress and generalizes their interplay mechanism in cell fate determination.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 705
Author(s):  
Yejun Zhong ◽  
Jincheng Zhao ◽  
Taotao Dai ◽  
Jiangping Ye ◽  
Jianyong Wu ◽  
...  

Protein–polyphenol interactions influence emulsifying properties in both directions. Puerarin (PUE) is an isoflavone that can promote the formation of heat-set gels with whey protein isolate (WPI) through hydrogen bonding. We examined whether PUE improves the emulsifying properties of WPI and the stabilities of the emulsions. We found that forming composites with PUE improves the emulsifying properties of WPI in a concentration-dependent manner. The optimal concentration is 0.5%, which is the highest PUE concentration that can be solubilized in water. The PUE not only decreased the droplet size of the emulsions, but also increased the surface charge by forming composites with the WPI. A 21 day storage test also showed that the maximum PUE concentration improved the emulsion stability the most. A PUE concentration of 0.5% improved the stability of the WPI emulsions against environmental stress, especially thermal treatment. Surface protein loads indicated more protein was adsorbed to the oil droplets, resulting in less interfacial WPI concentration due to an increase in specific surface areas. The use of PUE also decreased the interfacial tension of WPI at the oil–water interface. To conclude, PUE improves the emulsifying activity, storage, and environmental stability of WPI emulsions. This result might be related to the decreased interfacial tension of WPI–PUE composites.


Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 679-679
Author(s):  
Quy N Diep ◽  
Rhian M Touyz ◽  
Ernesto L Schiffrin

9 Omega-3 fatty acids (n-3 FAs) exert a blood pressure-lowering effect in hypertension, possibly by influencing vascular structure. We previously demonstrated that n-3 FAs might induce vascular smooth muscle cell (VSMC) apoptosis, which could exert an effect on structure of blood vessels. This study investigated signaling pathways through which n-3 FAs mediate apoptosis in VSMCs. Cultured Mesenteric VSMCs from Sprague Dawley rats were stimulated with docosahexaenoic acid (DHA), a representative n-3 FA. Morphological changes of apoptosis and DNA fragmentation were examined by phase-contrast microscopy and fluorescence microscopy with Hoechst 33342 staining. To clarify possible pathways of apoptosis, expression of phosphorylated p38 mitogen-activated protein kinases (p38 MAPKs), bax, bcl-2, cytochrome C and peroxisome proliferator-activated receptors-α (PPARs-α) was evaluated by Western blot analysis. DHA treatment induced cell shrinkage, cell membrane blebbing and apoptotic bodies in VSMCs. DHA increased apoptosis (%) in a time-dependent manner to 1.5±0.1, 3.6±0.5, 7.1±0.4, 22.5±0.6, 50.8±1.8 and 61.4±0.9 after 0, 1, 3, 6, 17, and 24 h, respectively. DHA time-dependently activated p38 MAPKs, bax, PPARs-α and cytochrome C with maximal effects obtained after 5, 30 min, 1 h and 3 h, respectively to 551±42, 245±55, 310±12 and 407±14.7 % of controls, respectively. SB-203580 (10 -5 M) and SB-202190 (10 -5 M), selective p38 inhibitors, reduced DHA-elicited apoptosis and expression of PPARs-α, but had no effect on expression of bax or cytochrome C. The present results indicate that DHA induces apoptosis in VSMCs through at least two distinct mechanisms: (i) a p38-dependent pathway that regulates PPAR-α and (ii) a p38-independent pathway via dissipation of mitochondrial transmembrane potential. The death-signaling pathway mediated by DHA may involve an integration of these multiple pathways. By triggering VSMC apoptosis, DHA could play a pathophysiological role in vascular remodeling in cardiovascular disease.


Crustaceana ◽  
2021 ◽  
Vol 94 (7) ◽  
pp. 855-863
Author(s):  
Ming Zhao ◽  
Fengying Zhang ◽  
Wei Wang ◽  
Zhiqiang Liu ◽  
Lingbo Ma

Abstract The mud crab Scylla paramamosain is one of the economically important aquaculture species in China. The larval development of the mud crab is characterized by two significant morphological changes, from the 5th zoea (Z5) to the megalopa (M) stage and from the M to the first juvenile crab (C1) stage. In this study, we found that methyl farnesoate (MF) could prohibit the Z5 to M metamorphosis in a concentration-dependent manner, and that a concentration of 10 μM MF could completely prohibit the Z5 metamorphosis. Farnesoic acid (FA) could also prohibit the Z5 metamorphosis, but its effects seemed to be concentration-independent. In addition, MF could delay rather than prohibit the M to C1 metamorphosis, while FA had no effect on the M to C1 metamorphosis at all. To summarize, it is hypothesized that either absence of MF and FA, or at least very low levels of these substances, might be necessary for a successful Z5 to M metamorphosis.


Sign in / Sign up

Export Citation Format

Share Document