scholarly journals Prenatal exposure to a maternal low-protein diet programmes a preference for high-fat foods in the young adult rat

2004 ◽  
Vol 92 (3) ◽  
pp. 513-520 ◽  
Author(s):  
Leanne Bellinger ◽  
Christina Lilley ◽  
Simon C. Langley-Evans

Nutrient restriction in pregnancy has been shown to programme adult obesity. Modulation of feeding behaviour may provide a mechanism through which obesity may be programmed. Pregnant Wistar rats were fed either a control diet or a low-protein (LP) diet throughout gestation. Their offspring were allocated to a self-selected-diet protocol to assess appetite and food preferences at 12 and at 30 weeks of age. Self-selection of high-fat, high-protein or high-carbohydrate foods by 12-week-old rats indicated that the prenatal environment influenced feeding behaviour. Both male and female offspring of LP-fed mothers consumed significantly more of the high-fat (P>0·001) and significantly less (P>0·02) of the high-carbohydrate food than the control animals. Female, but not male, offspring of LP-fed rats failed to adjust food intake to maintain a constant energy intake and had higher fat (P>0·005) and energy intakes (P>0·05) than control female rats. At 30 weeks of age there were no differences in the pattern of food selection between the two groups of animals. Male offspring of LP-fed rats had significantly more gonadal fat than control animals (P>0·05), but analysis of total body fat content indicated that there was no significant difference in overall adiposity. The present study suggests that in young adults at least, early life exposure to undernutrition determines a preference for fatty foods. Maternal nutrition may thus promote changes in systems that are involved in control of appetite or the perception of palatability.

2009 ◽  
Vol 21 (9) ◽  
pp. 84
Author(s):  
K. Chiam ◽  
S. Jindal ◽  
N. Ryan ◽  
S. Moretta ◽  
M. De Blasio ◽  
...  

The World Health Organization has stated that 75% of adults worldwide are overweight, and in Australia nearly 25% of men are obese. Obesity is associated with an increased risk of cardiovascular disease, type 2 diabetes and cancer, with 30 to 40% of the latter possibly preventable by maintaining a healthy weight (The International Association for the Study of Obesity). Prostate cancer is the most commonly diagnosed cancer in men and there is increasing evidence that obesity increases the risk of prostate cancer mortality. High birth weight, an indication of excess nutrition during foetal development, has been associated with an increased risk of childhood and adult obesity, and for cancer. Using an animal model, we investigated whether obese mothers are more likely to have obese sons who are at an increased risk of developing prostate abnormalities and thus prostate cancer, in adulthood. Female rats were fed with either a control diet (4g fat/kg) or high fat diet (100g fat/kg) from before mating and throughout pregnancy. Prostate tissues were collected from the male offspring at 90 days (post-puberty) and 180 days (young adult). Histological analysis of the day 90 prostates identified hyperplasia in 100% of the ventral lobes (VL) and 64% of the dorsolateral lobes (DLP) in offspring of the maternal high fat group compared to 0% in each respectively, in those of the maternal control diet group. The VL is the most hormone sensitive prostate lobe of the rat, while the DLP is considered the equivalent of the human peripheral zone, the region from which the majority of human prostate cancers arise. These results suggest for the first time that maternal high fat diet may induce prostate abnormalities in male offspring that may in turn, predispose to an increased risk of prostate cancer in later life.


2005 ◽  
Vol 109 (4) ◽  
pp. 413-420 ◽  
Author(s):  
Leanne Bellinger ◽  
Simon C. Langley-Evans

Undernutrition in fetal life programmes risk of obesity and the metabolic syndrome in adult life. Rat studies indicate that exposure to a maternal low-protein diet throughout fetal life establishes a preference for high-fat foods. The present study aimed to assess the effect of low protein exposure during discrete 7-day periods of gestation upon feeding behaviour (full gestation 22 days). Pregnant rats were fed control or low-protein diet, with low-protein feeding targeted at day 0–7 (LPEarly), day 8–14 (LPMid) or day 15–22 (LPLate) of gestation. At 12 weeks of age, offspring were placed on a macronutrient self-selection regimen. Prenatal protein restriction programmed feeding behaviour in female, but not male, offspring. Among females, all low-protein exposed groups consumed less fat than the control group (P<0.05). Male offspring showed no changes in feeding behaviour. In males and females fed a low-fat chow diet, there were metabolic differences between the groups. LPEarly and LPLate males had greater hepatic glycogen stores than control animals. There were no differences in the size of abdominal fat depots in either male or female rats exposed to low-protein diet at any point in gestation. The data suggest that programming of feeding behaviour is likely to be gender-specific and dependent upon the timing of nutrient insult in fetal life. This work may have implications for the development of the metabolic syndrome.


2003 ◽  
Vol 77 (3) ◽  
pp. 429-437 ◽  
Author(s):  
D. Renaudeau ◽  
J.-L. Weisbecker ◽  
J. Noblet

AbstractTwenty-seven multiparous Large White sows were used to determine the effect of season in a tropical climate and dietary fibre on their feeding behaviour during lactation. The experiment was conducted in Guadeloupe (French West Indies, latitude 16°N, longitude 61°W) between October 1999 and January 2001; climatic conditions in the farrowing room were equivalent to outdoor conditions. Two seasons were determined a posteriori from climatic criteria recorded continuously in the farrowing room. During the warm season, ambient temperature and relative humidity averaged 25°C and 0·868, respectively. The corresponding values for the hot season were 27·5°C and 0·835. Experimental diets offered during lactation were a control diet (C; 140 g neutral-detergent fibre (NDF) per kg) and a high fibre diet (HF; 200 g NDF per kg). Sows were offered food ad libitum between the 6th and the 27th day of lactation. Daily food intake between day 6 and day 27 decreased during the hot season (P < 0·001; 3226 v. 5571 g/d during the warm season). This was achieved by a reduction of both meal size (P < 0·05; 460 v. 718 g per meal) and ingestion and consumption time (P < 0·01; -11·1 and -15·3 min/day, respectively) whereas the number of meals remained constant (8·4 meals per day on average). During warm season, hourly food intake peaked twice daily near sunrise and sunset. During the hot season, peaks were attenuated and food intake was reduced during the hotter periods of the day and increased during the fresher period of the day, especially in early morning. As a result the diurnal partition of food intake was significantly affected by season; proportionately 0·62 and 0·47 of total food intake occurred during the day in warm and in hot seasons, respectively. Standing duration averaged 138 min/ day with no significant difference between seasons. Feeding behaviour criteria were not influenced by diet composition. In conclusion, the season in a humid tropical climate significantly affects the feeding behaviour of lactating sows.


2019 ◽  
Vol 34 (6) ◽  
pp. 1531-1546 ◽  
Author(s):  
Ravinder Naik Dharavath ◽  
Shiyana Arora ◽  
Mahendra Bishnoi ◽  
Kanthi Kiran Kondepudi ◽  
Kanwaljit Chopra

2020 ◽  
Vol 10 (17) ◽  
pp. 6131
Author(s):  
Parkpoom Siriarchavatana ◽  
Marlena C. Kruger ◽  
Matthew R. Miller ◽  
Hong (Sabrina) Tian ◽  
Frances M. Wolber

The prevalence of metabolic osteoarthritis has been increasing worldwide, particularly among women. The aim of this study was to investigate the effects of the New Zealand greenshell mussel (Perna canaliculus; GSM) on osteoarthritis (OA) prevention in a rat model. One-hundred-and-eight female rats aged 12 weeks were divided into four test groups, containing 24 rats each, plus an additional control group. Each test group received one of the four experimental diets: normal control diet (ND), normal control diet supplemented with GSM (ND + GSM), high fat/high sugar diet (HFHS), or high fat/high sugar diet supplemented GSM (HFHS + GSM), for 36 weeks (end of the study). After 8 weeks on experimental diets, half of each group was subjected to ovariectomy (OVX) and the remaining half received a sham operation (ovaries left intact). The study evaluated body composition, bone mass, plasma cytokines, adipokines, HbA1c, CTX-II, and knee joint’s histopathology. HFHS diet and OVX significantly induced body weight gain and leptin production. OVX rats lost bone mineral density but increased adiponectin, HbA1C, and MCP-1. The OVX rats fed HFHS showed the highest Mankin scores. Importantly, inclusion of GSM reduced these pathological features. In conclusion, GSM might be beneficial in halting the progression of OA.


1966 ◽  
Vol 44 (6) ◽  
pp. 809-817 ◽  
Author(s):  
Sheila I. Read ◽  
E. J. Middleton ◽  
W. P. Mckinley

Female rats were fed diets low in minerals, vitamins, or protein, or a control diet, both alone and supplemented with 10 parts per million (p.p.m.) parathion for 3 weeks. Male and female rats were fed control and tow-vitamin diets both with and without parathion supplementation (0–10 p.p.m.) for 3 weeks. The liver and kidney carboxylesterases (EC 3.1.1.1.), and the plasma acetylcholinesterases (EC 3.1.1.7.) of the male rats, were measured.In the female rats, a low-mineral diet resulted in an increase of carboxylesterases in the liver and kidney; a low-vitamin diet caused a marked increase in liver carboxylesterases but had no effect on the carboxylesterases of the kidney. Parathion at 10 p.p.m. in all diets greatly reduced the liver carboxylesterases but had less effect on kidney carboxylesterases, except in the case of the low-protein diet, for which the reduction was similar to that in the liver. Varying amounts of parathion added to the low-vitamin diet reduced the liver and kidney carboxylesterases, but to a less extent than when added to the control diet.The liver carboxylesterases of male rats were inhibited approximately 50% by 2 p.p.m. parathion in the control diet and by 4 p.p.m. parathion in the low-vitamin diet. However, inhibition of plasma acetylcholinesterase and kidney carboxylesterases was not marked until the 10 p.p.m. parathion level was fed. The acetylcholinesterase activity of the plasma of male rats did not decrease until the level of liver carboxylesterases was very low.


2003 ◽  
Vol 88 (12) ◽  
pp. 5661-5667 ◽  
Author(s):  
Narumi Nagai ◽  
Naoki Sakane ◽  
Linda Massako Ueno ◽  
Taku Hamada ◽  
Toshio Moritani

Abstract This study investigated whether the −3826 A→G nucleotide variant of the uncoupling protein-1 (UCP1) gene is correlated with postprandial thermogenesis after a high fat meal in children. Healthy boys, aged 8–11 yr, were examined for resting energy expenditure and the thermic effect of a meal (TEM), which were measured by indirect calorimetry for 180 min after a high fat (70% fat, 20% carbohydrate, and 10% protein, providing 30% of the daily energy requirement) and a high carbohydrate meal (20% fat, 70% carbohydrate, and 10% protein). The sympatho-vagal activities were assessed by means of spectral analysis of the heart rate variability during the same period. Children were genotyped for UCP1 polymorphism by applying a PCR-restriction fragment length polymorphism using buccal samples. There was no reaction of sympathetic activity to the high carbohydrate meal in eitherthe GG allele or the AA+AG group and no significant difference in TEM. However, after the high fat meal, sympathetic responses were found in both groups; further, the GG allele group showed significantly lower TEM than the AA+AG group. In conclusion, despite fat-induced sympathetic stimulation, GG allele carriers have a lowered capacity of TEM in response to fat intake, suggesting that such impaired UCP1-linked thermogenesis can have adverse effects on the regulation of body weight.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jia Zheng ◽  
Ling Zhang ◽  
Jiayi Liu ◽  
Yanli Li ◽  
Junqing Zhang

Substantial evidence indicated that maternal malnutrition could increase the susceptibility to obesity, insulin resistance, and type 2 diabetes in adulthood. It is increasingly apparent that the brain, especially the hypothalamus, plays a critical role in glucose homeostasis. However, little information is known about the mechanisms linking maternal protein restriction combined with post-weaning high-fat (HF) feeding with altered expression of brain neurotransmitters, and investigations into the epigenetic modifications of hypothalamus in offspring have not been fully elucidated. Our objective was to explore the effects of maternal protein restriction combined with post-weaning HF feeding on glucose metabolism and hypothalamic POMC methylation in male offspring mice. C57/BL6 mice were fed on either low-protein (LP) or normal chow (NC) diet throughout gestation and lactation. Then, the male offspring were randomly weaned to either NC or high-fat (HF) diet until 32 weeks of age. Gene expressions and DNA methylation of hypothalamic proopiomelanocortin (POMC) and melanocortin receptor 4 (MC4R) were determined in male offspring. The results showed that birth weights and body weights at weaning were both significantly lower in male offspring mice of the dams fed with a LP diet. Maternal protein restriction combined with post-weaning high-fat feeding, predisposes higher body weight, persistent glucose intolerance (from weaning to 32 weeks of age), hyperinsulinemia, and hyperleptinemia in male offspring mice. POMC and MC4R expressions were significantly increased in offspring mice fed with maternal LP and postnatal high-fat diet (P &lt; 0.05). Furthermore, maternal protein restriction combined with post-weaning high-fat feeding induced hypomethylation of POMC promoter in the hypothalamus (P &lt; 0.05) and POMC-specific methylation (%) was negatively correlated with the glucose response to a glucose load in male offspring mice (r = −0.42, P = 0.039). In conclusion, maternal LP diet combined with post-weaning high-fat feeding predisposed the male offspring to impaired glucose metabolism and hypothalamic POMC hypomethylation. These findings can advance our thinking about hypothalamic POMC gene methylation between maternal LP diet combined with post-weaning high-fat feeding and metabolic health in offspring.


1969 ◽  
Vol 55 (2) ◽  
pp. 79-83 ◽  
Author(s):  
Melvin D. Reuber

Inbred Buffalo male and female rats, 4-, 8-, 12-, 24-, and 52-weeks old, ingested a high fat, low protein and choline deficient diet. Preneoplastic and early neoplastic lesions of the parenchymal cells, as well as cirrhosis, developed in the liver. Hyperplastic lesions generally were observed more often in male animals and in younger animals. The hyperplastic lesions, developing in the periportal regions, were similar histologically and with regard to age and sex to lesions demonstrated as precarcinogenic in animals given chemical carcinogens.


2019 ◽  
Vol 109 (2) ◽  
pp. 113-130 ◽  
Author(s):  
Olaya Fernández-Gayol ◽  
Paula Sanchis ◽  
Kevin Aguilar ◽  
Alicia Navarro-Sempere ◽  
Gemma Comes ◽  
...  

Background/Aims: Interleukin-6 (IL-6) is a major cytokine controlling body weight and metabolism, at least in part through actions in the central nervous system (CNS) from local sources. Methods: We herewith report results obtained in conditional IL-6 KO mice for brain cells (Il6ΔGfap and Il6ΔSyn). Results: The reporter RiboTag mouse line demonstrated specific astrocytic expression of GFAP-dependent Cre in the hypothalamus but not in other brain areas, whereas that of synapsin 1-dependent Cre was specific for neurons. Feeding a high-fat diet (HFD) or a control diet showed that Il6ΔGfap and Il6ΔSyn mice were more prone and resistant, respectively, to HFD-induced obesity. Energy intake was not altered in HFD experiments, but it was reduced in Il6ΔSyn male mice following a 24-h fast. HFD increased circulating insulin, leptin, and cholesterol levels, decreased triglycerides, and caused impaired responses to the insulin and glucose tolerance tests. In Il6ΔGfap mice, the only significant difference observed was an increase in insulin levels of females, whereas in Il6ΔSyn mice the effects of HFD were decreased. Hypothalamic Agrp expression was significantly decreased by HFD, further decreased in Il6ΔGfap, and increased in Il6ΔSyn female mice. Hypothalamic Il-6 mRNA levels were not decreased in Il6ΔSyn mice and even increased in Il6ΔGfapmale mice. Microarray analysis of hypothalamic RNA showed that female Il6ΔGfap mice had increased interferon-related pathways and affected processes in behavior, modulation of chemical synaptic transmission, learning, and memory. Conclusion: The present results demonstrate that brain production of IL-6 regulates body weight in the context of caloric excess and that the cellular source is critical.


Sign in / Sign up

Export Citation Format

Share Document