Plant propagation.

Author(s):  
Vicki Cottrell

Abstract It is thought that plant propagation, i.e. multiplying plants, preserving their qualities, and tending them, began approx. 10,000 years ago when people began to cultivate plants for food and other products (Hartman et al., 2010). Most basic methods of plant propagation had been discovered before the start of recorded history, and many plant species had already been domesticated (selected and adapted to human use), including cereals and legumes (Hartman et al., 2010). The two main types of plant propagation are sexual and asexual propagation. Sexual propagation usually involves the production of seed, leading to production of progeny with variable characteristics, so it is often used in plant breeding. Asexual propagation leads to clones of the parent plant and is useful when specific characteristics are desired in the new plants. There are many different forms of asexual or vegetative propagation, including cuttings, grafting, division, storage organs and in vitro techniques.

2020 ◽  
Vol 1 (383) ◽  
pp. 89-96
Author(s):  
V. Polishchuk ◽  
S. Turchina ◽  
A. Balabak ◽  
I. Kozachenko ◽  
V. Mamchur ◽  
...  

The relevance of the research topic. On the recent methods of biotechnology are increasingly used in plant breeding and seed production. Herbaceous plants such as strawberries, potatoes, a vegetable, some medicinal and others are capable of vegetative propagation the traditional methods of culture, successfully introduced in both in vitro and can achieve a high rate of reproduction. Modern plant biotechnology – the sum of the technologies developed in molecular and cell biology of plants – a new stage in the development of the technology of plant breeding. With these improved characteristics may occur at the level of individual genes and individual genes that determine a specific trait, can be identified. They may be the final selection, they can be isolated, insert, delete, or modify the genotype or variety. Goal. Identify the features of the manifestation of economically valuable features and decorative properties of Callistephus chinensis and the inclusion of the best varieties in the biotech link, their adaptation to the conditions of the Forest-Steppe of Ukraine and their further use in landscaping. Methods. Laboratory – determination of seed germination; mathematical and statistical - for processing the reliability of the obtained research results. Results. The nutrient medium for growing plant tissues and cells, by analogy with the medium for culturing animal tissues, should contain all that the tissues in the plant organism receive from xylem and phloem currents of substances. However, in practice it has been found that vegetable juices cannot serve as a complete nutrient medium for growing isolated tissues and cells. This manifests the specificity of the receipt, transportation and especially the redistribution of nutrients in the plant. Based on the analysis, research was conducted to study the possibility of mass off-season vegetative propagation of plants of Callistephus chinensis in vitro. Practical recommendations on the selection of sterilizer, sterilization, nutrient medium and for the adaptation period of the best genotypes of this culture have been developed. As a result of the conducted researches the methods of selection of the initial plant material of Callistephus chinensis (Callistephus Chinensis (L.) NEES) and its surface sterilization, modification of existing aseptic culture methods have been studied and mastered. The morphogenetic potential of explants from different plant organs was investigated and selection of nutrient medium and study of the influence of plant growth regulators and physical parameters on the process of morphogenesis was carried out. The features of regeneration of isolated explants depending on the composition of the nutrient medium and selection of conditions for obtaining self-clones of Callistephus chinensis (Callistephus Chinensis (L.) NEES) were studied. Key words: in vitro, plant biotechnology, Callistephus Chinensis, nutrient medium, rhizogenesis.


Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 348
Author(s):  
Cecilio F. Caldeira ◽  
Arthur V. S. Lopes ◽  
Keyvilla C. Aguiar ◽  
Aline L. Ferreira ◽  
João V. S. Araujo ◽  
...  

We examined the reproductive strategy of two Amazonian quillworts (Isoëtes cangae and Isoëtes serracarajensis), endemic and threatened species of canga ecosystems. Sexual propagation was examined by in vitro fertilization assays, while asexual propagation was examined by tiller emission. Isoëtes cangae is an outcrossing species that reproduces exclusively by spore germination and is able to propagate by self- and cross-fertilization. Isoëtes serracarajensis reproduces asexually by emitting tillers from the plant corm, despite producing male and female sporangia. These distinct reproductive strategies in the different species may be linked to their contrasting habitats. Isoëtes cangae inhabit a permanent oligotrophic lake with mild environmental changes, while I. serracarajensis are found in temporary ponds facing severe seasonal drought, where asexual propagation may represent an adaptive advantage to the short growth period during access to water. We also observed different relationships between plant growth and reproductive traits between the species, despite their common production of sporophytes with high survival rates. Together, these results are of paramount importance for establishing conservation plans for both species considering the advantages of sexual propagation to maintain the genetic diversity of I. cangae and the diligent management required to do the same with asexually propagated I. serracarajensis.


2020 ◽  
Vol 26 (24) ◽  
pp. 2817-2842
Author(s):  
Ewa Skała ◽  
Joanna Makowczyńska ◽  
Joanna Wieczfinska ◽  
Tomasz Kowalczyk ◽  
Przemysław Sitarek

Background: For a long time, the researchers have been looking for new efficient methods to enhance production and obtain valuable plant secondary metabolites, which would contribute to the protection of the natural environment through the preservation of various plant species, often rare and endangered. These possibilities offer plant in vitro cultures which can be performed under strictly-controlled conditions, regardless of the season or climate and environmental factors. Biotechnological methods are promising strategies for obtaining the valuable plant secondary metabolites with various classes of chemical compounds including caffeoylquinic acids (CQAs) and their derivatives. CQAs have been found in many plant species which are components in the daily diet and exhibit a wide spectrum of biological activities, including antioxidant, immunomodulatory, antihypertensive, analgesic, anti-inflammatory, hepato- and neuroprotective, anti-hyperglycemic, anticancer, antiviral and antimicrobial activities. They have also been found to offer protection against Alzheimer’s disease, and play a role in weight reduction and lipid metabolism control, as well as modulating the activity of glucose-6-phosphatase involved in glucose metabolism. Methods: This work presents the review of the recent advances in use in vitro cultures of various plant species for the alternative system to the production of CQAs and their derivatives. Production of the secondary metabolites in in vitro culture is usually performed with cell suspension or organ cultures, such as shoots and adventitious or transformed roots. To achieve high production of valuable secondary metabolites in in vitro cultures, the optimization of the culture condition is necessary with respect to both biomass accumulation and metabolite content. The optimization of the culture conditions can be achieved by choosing the type of medium, growth regulators or growth conditions, selection of high-productivity lines or culture period, supplementation of the culture medium with precursors or elicitor treatments. Cultivation for large-scale in bioreactors and genetic engineering: Agrobacterium rhizogenes transformation and expression improvement of transcriptional factor or genes involved in the secondary metabolite production pathway are also efficient strategies for enhancement of the valuable secondary metabolites. Results: Many studies have been reported to obtain highly productive plant in vitro cultures with respect to CQAs. Among these valuable secondary metabolites, the most abundant compound accumulated in in vitro cultures was 5-CQA (chlorogenic acid). Highly productive cultures with respect to this phenolic acid were Leonurus sibiricus AtPAP1 transgenic roots, Lonicera macranthoides and Eucomia ulmoides cell suspension cultures which accumulated above 20 mg g-1 DW 5-CQA. It is known that di- and triCQAs are less common in plants than monoCQAs, but it was also possible to obtain them by biotechnological methods. Conclusion: The results indicate that the various in vitro cultures of different plant species can be a profitable approach for the production of CQAs. In particular, an efficient production of these valuable compounds is possible by Lonicera macranthoides and Eucomia ulmoides cell suspension cultures, Leonurus sibiricus transformed roots and AtPAP1 transgenic roots, Echinacea angustifolia adventitious shoots, Rhaponticum carthamoides transformed plants, Lavandula viridis shoots, Sausera involucrata cell suspension and Cichorium intybus transformed roots.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1441
Author(s):  
Youssef Chebli ◽  
Samira El Otmani ◽  
Mouad Chentouf ◽  
Jean-Luc Hornick ◽  
Jean-François Cabaraux

Forest rangelands contribute largely to goat diets in the Mediterranean area. Information about browsed plant quality is essential for adequate feeding management. The purpose of this study was to evaluate the temporal changes in chemical composition and in vitro digestibility of the main plant species selected by goats in the Southern Mediterranean forest rangeland during two consecutive years; these were very contrasted (dry and wet). The browsed species were composed of herbaceous, eleven shrubs, and four tree species. Overall, large variability in chemical composition, in vitro organic matter digestibility (IVOMD), and metabolizable energy (ME) was observed among species, grazing season (spring, summer, and autumn), and years within each species. Crude protein (CP) content varied from 60 to 240 g/kg dry matter (DM). The fiber fractions, except for Quercus suber, increased significantly by advancing maturity. Due to the water stress, the lignin level presented a higher value during the spring of the dry year. Condensed tannin (CT) content varied from 2 to 184 g/kg DM. CP, IVOMD, and ME showed a negative correlation with lignin and CT. Based on the results presented herein, it is concluded that the nutritive value of the browsed plant species was highest in the spring and lowest during the summer and autumn of both studied years. With a good grazing management strategy, the selected plant species by goats could guarantee high-quality feeding resources throughout the year.


2021 ◽  
Vol 13 (12) ◽  
pp. 6743
Author(s):  
Veerala Priyanka ◽  
Rahul Kumar ◽  
Inderpreet Dhaliwal ◽  
Prashant Kaushik

Germplasm is a valuable natural resource that provides knowledge about the genetic composition of a species and is crucial for conserving plant diversity. Germplasm protection strategies not only involve rescuing plant species threatened with extinction, but also help preserve all essential plants, on which rests the survival of all organisms. The successful use of genetic resources necessitates their diligent collection, storage, analysis, documentation, and exchange. Slow growth cultures, cryopreservation, pollen and DNA banks, botanical gardens, genetic reserves, and farmers’ fields are a few germplasm conservation techniques being employed. However, the adoption of in-vitro techniques with any chance of genetic instability could lead to the destruction of the entire substance, but the improved understanding of basic regeneration biology would, in turn, undoubtedly increase the capacity to regenerate new plants, thus expanding selection possibilities. Germplasm conservation seeks to conserve endangered and vulnerable plant species worldwide for future proliferation and development; it is also the bedrock of agricultural production.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1206
Author(s):  
Aimilia D. Sklirou ◽  
Maria T. Angelopoulou ◽  
Aikaterini Argyropoulou ◽  
Eliza Chaita ◽  
Vasiliki Ioanna Boka ◽  
...  

Skin health is heavily affected by ultraviolet irradiation from the sun. In addition, senile skin is characterized by major changes in the collagen, elastin and in the hyaluronan content. Natural products (NPs) have been shown to delay cellular senescence or in vivo aging by regulating age-related signaling pathways. Moreover, NPs are a preferable source of photoprotective agents and have been proven to be useful against the undesirable skin hyperpigmentation. Greek flora harvests great plant diversity with approximately 6000 plant species, as it has a wealth of NPs. Here, we report an extensive screening among hundreds of plant species. More than 440 plant species and subspecies were selected and evaluated. The extracts were screened for their antioxidant and anti-melanogenic properties, while the most promising were further subjected to various in vitro and cell-based assays related to skin aging. In parallel, their chemical profile was analyzed with High-Performance Thin-Layer Chromatography (HPTLC) and/or Ultra-Performance Liquid Chromatography High-Resolution Mass Spectrometry (UPLC-HRMS). A variety of extracts were identified that can be of great value for the cosmetic industry, since they combine antioxidant, photoprotective, anti-melanogenic and anti-aging properties. In particular, the methanolic extracts of Sideritis scardica and Rosa damascena could be worthy of further attention, since they showed interesting chemical profiles and promising properties against specific targets involved in skin aging.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3797
Author(s):  
Marta Olech ◽  
Wojciech Ziemichód ◽  
Natalia Nowacka-Jechalke

This review focuses on the natural sources and pharmacological activity of tormentic acid (TA; 2α,3β,19α-trihydroxyurs-2-en-28-oic acid). The current knowledge of its occurrence in various plant species and families is summarized. Biological activity (e.g., anti-inflammatory, antidiabetic, antihyperlipidemic, hepatoprotective, cardioprotective, neuroprotective, anti-cancer, anti-osteoarthritic, antinociceptive, antioxidative, anti-melanogenic, cytotoxic, antimicrobial, and antiparasitic) confirmed in in vitro and in vivo studies is compiled and described. Biochemical mechanisms affected by TA are indicated. Moreover, issues related to the biotechnological methods of production, effective eluents, and TA derivatives are presented.


Planta Medica ◽  
2018 ◽  
Vol 85 (04) ◽  
pp. 312-334 ◽  
Author(s):  
Fatai Balogun ◽  
Anofi Ashafa

AbstractSouth Africa contains 9% of the worldʼs higher plants, and despite its rich biodiversity, it has one of the highest prevalence of hypertension in Africa. This review provides information on medicinal plants embraced in South Africa for hypertension management, with the aim of reporting pharmacological information on the indigenous use of these plants as antihypertensives. This review not only focuses on the activity of antihypertensive medicinal plants but also reports some of its phytochemical constituents and other ethnopharmacological and therapeutic properties. Information obtained from scientific and or unpublished databases such as Science Direct, PubMed, SciFinder, JSTOR, Google Scholar, Web of Science, and various books revealed 117 documented antihypertensive plant species from 50 families. Interestingly, Asteraceae topped the list with 16 species, followed by Fabaceae with 8 species; however, only 25% of all plant species have demonstrated antihypertensive effects originating from both in vitro and in vivo studies, lending credence to their folkloric use. Only 11 plant species reportedly possess antihypertensive properties in animal models, with very few species subjected to analytical processes to reveal the identity of their bioactive antihypertensive compounds. In this review, we hope to encourage researchers and global research institutions (universities, agricultural research councils, and medical research councils), particularly those showing an interest in natural products, for the need for concerted efforts to undertake more studies aimed at revealing the untapped potential of these plants. These studies are very important for the development of new pharmaceuticals of natural origin useful for the management of hypertension.


Our Nature ◽  
1970 ◽  
Vol 1 (1) ◽  
pp. 30-32
Author(s):  
Kamal Maden

This article deals with the propagation of endangered but economically valuable gymnospermic plant species, Taxus baccata L. Taxol; an antitumor agent is prepared from the extracted material, both leaves and stem resin of it. Vegetative propagation was done by cuttings. The twigs were taken in Madimulkhark of Sankhuwasabha district and put in the bed for rooting without any chemical treatments. Independent experiments were conducted in two seasons i.e, February-March and May-June. The latter season was found suitable for emergence of young twigs. Keywords: Taxol, Gymnosperms, Propagation, Conservationdoi:10.3126/on.v1i1.301Our Nature (2003) 1: 30-32


Sign in / Sign up

Export Citation Format

Share Document