What is happening to insect numbers, and what does it mean?

Author(s):  
Simon R. Leather

Abstract Reports of declines in abundance of a number of insect species have been increasing over the last two decades. These have variously been attributed to climate change, urbanisation, deforestation, agricultural intensification, habitat fragmentation and pesticide usage. The picture has been complicated by the fact that not all insect groups have shown the drastic declines reported for others, flawed methodology, paucity of long-term studies, the lack of data from the tropics with most long-term studies emanating from Europe and North America. In addition, the number of insect groups studied has largely been restricted to charismatic species such as Hymenoptera, Lepidoptera, Coleoptera and Odonata. Despite this, the evidence for long-term declines in insect abundance is incontrovertible. To aid in our understanding of the problem we need to set up more globally coordinated studies, use past data in innovative ways and convince policy makers and governments to support these studies.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Heikki S. Lehtonen ◽  
Jyrki Aakkula ◽  
Stefan Fronzek ◽  
Janne Helin ◽  
Mikael Hildén ◽  
...  

AbstractShared socioeconomic pathways (SSPs), developed at global scale, comprise narrative descriptions and quantifications of future world developments that are intended for climate change scenario analysis. However, their extension to national and regional scales can be challenging. Here, we present SSP narratives co-developed with stakeholders for the agriculture and food sector in Finland. These are derived from intensive discussions at a workshop attended by approximately 39 participants offering a range of sectoral perspectives. Using general background descriptions of the SSPs for Europe, facilitated discussions were held in parallel for each of four SSPs reflecting very different contexts for the development of the sector up to 2050 and beyond. Discussions focused on five themes from the perspectives of consumers, producers and policy-makers, included a joint final session and allowed for post-workshop feedback. Results reflect careful sector-based, national-level interpretations of the global SSPs from which we have constructed consensus narratives. Our results also show important critical remarks and minority viewpoints. Interesting features of the Finnish narratives compared to the global SSP narratives include greater emphasis on environmental quality; significant land abandonment in SSPs with reduced livestock production and increased plant-based diets; continued need for some farm subsidies across all SSPs and opportunities for diversifying domestic production under scenarios of restricted trade. Our results can contribute to the development of more detailed national long-term scenarios for food and agriculture that are both relevant for local stakeholders and researchers as well as being consistent with global scenarios being applied internationally.


2021 ◽  
Author(s):  
Otmane Khalfaoui ◽  
laurent Dezileau ◽  
Jean-Philippe Degeai ◽  
Maria Snoussi

<p>The Atlantic coast of Morocco has been confronted with several marine submersion events. Historically, some of them have resulted in significant economic and human damage, including the 1755 AD event (known as the tsunami of Lisbon). This indicates the need to implement adaptation and mitigation strategies, based on long-term studies of these extreme events to deduce their spatial and temporal variability. Using two cores (TAH17-1 and TAH17-3) collected from the Tahaddart estuary (NW of Morocco), this work aims to identify deposits, set up by these high energy events during the mid to late Holocene period. The sedimentological, geochemical and geochronological analyses carried out on these geological archives show two fining-upward sequences, indicating a progressive change from a purely sandy marine facies, between 6500 and 3500 BP, to another finer and more terrigenous one. The fine sedimentation, which has dominated in the estuary during the last 3500 years, has facilitated the recording of several marine submersion events in the form of isolated sandy layers. Chronological data have made it possible to date four deposits. Two (1-E1 and 3-E1) were put in place about 250 years ago, which corresponds, according to historical records, to the 1755 AD Lisbon tsunami. Two other deposits (1-E13 and 1-E14) are dated around 3200 BP and represent unknown submersion events on the Moroccan Atlantic coast.</p>


1999 ◽  
Vol 26 (3) ◽  
pp. 166-168 ◽  
Author(s):  
TIM NEWCOMB

Many nations have recognized the need to reduce the emissions of greenhouse gases (GHGs). The scientific assessments of climate change of the Intergovernmental Panel on Climate Change (IPCC) support the need to reduce GHG emissions. The 1997 Kyoto Protocol to the 1992 Convention on Climate Change (UNTS 30822) has now been signed by more than 65 countries, although that Protocol has not yet entered into force. Some 14 of the industrialized countries listed in the Protocol face reductions in carbon dioxide emissions of more than 10% compared to projected 1997 carbon dioxide emissions (Najam & Page 1998).


2018 ◽  
Author(s):  
Pascale Braconnot ◽  
Dan Zhu ◽  
Olivier Marti ◽  
Jérôme Servonnat

Abstract. We discuss here the first 6000 years long Holocene simulations with fully interactive vegetation and carbon cycle with the IPSL Earth system model. It reproduces the long term trends in tree line in northern hemisphere and the southward shift of Afro-Asian monsoon precipitation in the tropics in response to orbital forcing. The simulation is discussed at the light of a set of mid Holocene and pre industrial simulations performed to set up the model version and to initialize the dynamical vegetation. These sensitivity experiments remind us that model quality or realism is not only a function of model parameterizations and tuning, but also of experimental set up. They also question the possibility for bi-stable vegetation states under modern conditions. Despite these limitations the results show different timing of vegetation changes through space and time, mainly due to the pace of the insolation forcing and to internal variability. Forest in Eurasia exhibits changes in forest composition with time as well as large centennial variability. The rapid increase of atmospheric CO2 in the last centuries of the simulation contributes to enhance tree growth and counteracts the long term trends induced by Holocene insolation in the northern hemisphere. A complete evaluation of the results would require being able to properly account for systematic model biases and, more important, a careful choice of the reference period depending on the scientific questions.


2018 ◽  
Vol 6 (6) ◽  
pp. 205-211
Author(s):  
Oyerinde G. T. ◽  
Olowookere B.T.

Sub-Saharan Africa have low resilience capacities to the challenges of climate change. This study is aimed at assessing climate trends and regime shifts at the Sota Catchment, Benin. Long term rainfall and river discharge were analyzed from 1950-2010 in order to generate patterns of changes in the basin. Analysis of the hydro-meteorological were based on the two prominent vegetation zones (Sudan and Guinea Savannah) in the catchment. The rainfall and discharge data were subjected to regime shift analysis and Standardized Precipitation Indices (SPI) were computed. Downward trend of precipitation was observed in the Guinea and Sudan vegetation zones of the catchments from 1970. Rainfall and runoff amount at the two assessed vegetation zones was different in the Guinea and Sudan zone up till 1970. Clear merge of rainfall and runoff amount and patterns was witnessed between the two vegetation zones at 2007. This calls for attention of scientists and policy makers in the region to deploy necessary adaptation measures based on such clear evidence of climate change.


2021 ◽  
Author(s):  
Shengping Wang ◽  
Peter Strauss ◽  
Carmen Krammer ◽  
Elmar Schmaltz ◽  
Borbala Szeles ◽  
...  

Abstract. Climate change and agricultural intensification are expected to increase soil erosion and sediment production from arable land in many regions. However, so far, most studies have been based on short-term monitoring and/or modeling, making it difficult to assess their reliability in terms of long-term changes. We present the results from a unique data set consisting of measurements of sediment loads from a 60ha catchment (the HOAL Petzenkirchen in Austria) over a time window spanning 72 years. Specifically, we compare Period I (1946–1954) and Period II (2002–2017) by fitting sediment rating curves for the growth and dormant seasons for each of the periods. The results suggest a significant increase in sediment yield from Period I to Period II with an average of 11.6 ± 10.8 ton·yr−1 to 63.6 ± 84.0 ton·yr−1. The sediment flux changed mainly due to a shift of the sediment rating curves (SRC), given that the annual streamflow varied little between the periods (5.6 l·s−1 and 7.6 l·s−1, respectively, on average). The slopes of the log regression lines of the SRC for the growing season and the dormant season of Period I were 16.72 and 4.9, respectively, whilst they were 5.38 and 1.17 for Period II, respectively. Climate change, considered in terms of rainfall erosivity, was not responsible for this shift, given that erosivity decreased by 30.4 % from the dormant season of Period I to that of Period II, and no significant difference was found between the growing seasons of Periods I and II. However, the sediment flux changes can be explained by changes in crop type and parcel structure. During low and median streamflow conditions (i.e. Q < Q20 %), land consolidation in Period II (i.e. theparcel effect) did not exert an apparent influence on sediment production. Whilst with increasing stream flow (Q > Q20 %), parcel structure played an increasingly role in sediment yield contribution, and leading to a dominant role due to enhanced sediment connectivity in the landscape at extremely high flow conditions (i.e. Q > Q2 %). The increase in cropland in Period II at the expense of grassland had an unfavourable effect on sediment flux, independent of streamflow, with declining relevance as flow increased. We conclude that both land cover change and land consolidation should be accounted for simultaneously when assessing sediment flux changes. Especially during extremely high flow conditions, land consolidation substantially alters sediment fluxes, which is most relevant for long-term sediment loads and land degradation. Increased attention to improving parcel structure is therefore needed in climate adaptation and agricultural catchment management.


Author(s):  
Qiang Xu ◽  
Xuanmei Fan ◽  
Gianvito Scaringi

Abstract. The rock avalanche that destroyed the village of Xinmo in Sichuan, China, on June 24th, 2017, brought the issue of landslide risk and disaster chain management in highly seismic regions back into the spotlight. The long-term post-seismic behaviour of mountain slopes is complex and hardly predictable. Nevertheless, the integrated use of field monitoring, remote sensing and real-time predictive modelling can help to set-up effective early warning systems, provide timely alarms, optimize rescue operations and perform secondary hazard assessments. We believe that a comprehensive discussion on post-seismic slope stability and on its implications for policy makers can no longer be postponed.


Author(s):  
Sarah Jones

Background with rationaleTransport is an under-recognised wider determinant of health. But, there is growing recognition, among policy makers and the general public, that significant modal shift, from cars and to greater use of public transport and active travel is needed to improve and protect health directly and indirectly, and in the short and long term, including with regards to climate change. In Wales, this comes when a new Welsh Transport Strategy is being written. This is likely to encourage greater recognition of the links between transport and health and demand data to support understanding of the ways in which transport affects health, as well as to evaluate the effects of the strategy, and to support wider research into the links between transport and health. Main AimThis suggests the need for a formal, routine transport and health surveillance system. This study will therefore aim to determine whether this is needed. Methods/ApproachThe approach is a review of existing systems and the evidence for the links between transport and health. ResultsThis paper will present the results of the review noted above and outline the rationale for and structure of a Welsh Transport and Health Surveillance System that will support policy evaluation at local and national levels.


Author(s):  
W. Goldsmith ◽  
D. Bernardi ◽  
L. Schippa

Abstract. Management and construction can increase resilience in the face of climate change, and benefits can be enhanced through integration of biogenic materials including shells and vegetation. Rivers and coastal landforms are dynamic systems that respond to intentional and unintended manipulation of critical factors, often with unforeseen and/or undesirable resulting effects. River management strategies have impacts that include deltas and coastal areas which are increasingly vulnerable to climate change with reference to sea level rise and storm intensity. Whereas conventional assessment and analysis of rivers and coasts has relied on modelling of hydrology, hydraulics and sediment transport, incorporating additional biological factors can offer more comprehensive, beneficial and realistic alternatives. Suitable modelling tools can provide improved decision support. The question has been whether current models can effectively address biological responses with suitable reliability and efficiency. Since morphodynamic evolution exhibits its effects on a large timescale, the choice of mathematical model is not trivial and depends upon the availability of data, as well as the spatial extent, timelines and computation effort desired. The ultimate goal of the work is to set up a conveniently simplified river morphodynamic model, coupled with a biological dynamics plant population model able to predict the long-term evolution of large alluvial river systems managed through bioengineering. This paper presents the first step of the work related to the application of the model accounting for stationary vegetation condition. Sensitivity analysis has been performed on the main hydraulic, sedimentology, and biological parameters. The model has been applied to significant river training in Europe, Asia and North America, and comparative analysis has been used to validate analytical solutions. Data gaps and further areas for investigation are identified.


2020 ◽  
Author(s):  
Riccardo Scandroglio ◽  
Michael Krautblatter

&lt;p&gt;Warming of mountain permafrost leads to growth of active layer thickness and reduction of rock wall stability. The subsequent increase of instable rock volumes can have disastrous or even fatal consequences, especially when cascading events are simultaneously triggered. This growth of climate-change-connected hazard, together with the recent increase of exposition of infrastructure and people, poses the alpine environments at a high risk, which needs to be monitored.&amp;#160;Laboratory-calibrated Electrical Resistivity Tomography (ERT) has shown to provide a sensitive record for frozen vs. unfrozen conditions, presumably being the most accurate quantitative permafrost monitoring technique in permafrost areas where boreholes are not available.&lt;/p&gt;&lt;p&gt;The data presented here are obtained at the Steint&amp;#228;lli ridge in Switzerland, which presents highly vulnerable permafrost conditions. A consistent 3D field set-up, the robust temperature calibration and the quantitative inversion scheme allow to compare measurements from the longest time series (2006-2019) of ERT in steep bedrock. A direct link to mechanical changes measured with tape extensometer is provided. Comparison of repeated hourly measurements as well as Wenner and Schlumberger arrays are also shown here, in order to increase the robustness of the delivered results.&lt;/p&gt;&lt;p&gt;Confirming the long-term observation from air temperatures, results from multiple parallel transects show an average resistivity reduction of 22%, concentrated at deeper layers of the permafrost lens. The permafrost area in the 3D cross sections also decreased from 30 to 10% (about 500 to 150m&lt;sup&gt;2&lt;/sup&gt; in our transects), with losses mainly localized on the south-east part of the study site, but in some cases also extending to the north face.&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document