Genetic identification of species and natural hybridization determination based on mitochondrial DNA and nuclear DNA of genus Zacco in Korea

2020 ◽  
Vol 31 (6) ◽  
pp. 221-227 ◽  
Author(s):  
Philjae Kim ◽  
Jeong-Ho Han ◽  
Seung Lak An
2019 ◽  
Author(s):  
Fanny Rusman ◽  
Noelia Floridia-Yapur ◽  
Paula G. Ragone ◽  
Patricio Diosque ◽  
Nicolás Tomasini

AbstractBackgroundGenetic Exchange in Trypanosoma cruzi is controversial not only in relation to its frequency but also in relation to its mechanism. A mechanism of parasexuality has been proposed based on laboratory hybrids, but population genomics strongly suggests meiosis. In addition, mitochondrial introgression has been reported several times in natural isolates although its mechanism is not clear. Moreover, hybrid DTUs (TcV and TcVI) have inherited at least part of the kinetoplastic DNA (kDNA = mitochondrial DNA) from both parents.Methodology/Principal findingsIn order to address such topics, we sequenced and analyzed fourteen nuclear DNA fragments and three kDNA maxicircle genes in three TcI stocks which are natural clones potentially involved in events of genetic exchange. We also deep-sequenced (a total of 6,146,686 paired-end reads) the hypervariable region of kDNA minicircles (mHVR) in such three strains. In addition, we analyzed the DNA content by flow cytometry to address cell ploidy. We observed that most polymorphic sites in nuclear loci showed a hybrid pattern in one cloned strain and the other two cloned strains were compatible as parental strains (or nearly related to the true parents). The three clones have almost the same ploidy and the DNA content was similar to the reference strain Sylvio (an almost diploid strain). Despite maxicircle genes evolve faster than nuclear housekeeping ones, we did not detect polymorphism in the sequence of three maxicircle genes showing mito-nuclear discordance. In addition, the hybrid stock shared 66% of its mHVR clusters with one putative parental and 47% with the another one. In contrast, the putative parental stocks shared less than 30% of the mHVR clusters among them.Conclusions/significanceThe results suggest a reductive division, a natural hybridization, biparental inheritance of the minicircles in the hybrid and maxicircle introgression. The models including such phenomena and that would explain the relationships between these three clones are discussed.Author summaryChagas disease, an important public health problem in Latin America, is caused by the parasite Trypanosoma cruzi. Despite it is a widely studied parasite, several questions about the biology of genetic exchange remain. Meiosis has not been yet observed in laboratory, although inferred from population genomic studies. In addition, previous results suggest that the mitochondrial DNA (called kDNA) may be inherited from both parents in hybrids. Here, we analyzed a hybrid strain and the potential parents to address about the mechanisms of genetic exchange at nuclear and mitochondrial level. We observed that the hybrid strain has heterozygous patterns and DNA content compatible with an event of meiosis. In addition, we observed that the evolutionary histories of nuclear DNA and maxicircles (a part of the kDNA) were discordant and the three strains share identical DNA sequences. Mitochondrial introgression of maxicircle DNA from one genotype to another may explain this observation. In addition, we detected that the hybrid strain shared minicircles (another part of the kDNA) with both parental strains. Our results suggest that hybridization implied meiosis and biparental inheritance of the kDNA. Further research is required to address such phenomena in detail.


2021 ◽  
Vol 22 (10) ◽  
pp. 5100
Author(s):  
Paulina Kozakiewicz ◽  
Ludmiła Grzybowska-Szatkowska ◽  
Marzanna Ciesielka ◽  
Jolanta Rzymowska

The mitochondria are essential for normal cell functioning. Changes in mitochondrial DNA (mtDNA) may affect the occurrence of some chronic diseases and cancer. This process is complex and not entirely understood. The assignment to a particular mitochondrial haplogroup may be a factor that either contributes to cancer development or reduces its likelihood. Mutations in mtDNA occurring via an increase in reactive oxygen species may favour the occurrence of further changes both in mitochondrial and nuclear DNA. Mitochondrial DNA mutations in postmitotic cells are not inherited, but may play a role both in initiation and progression of cancer. One of the first discovered polymorphisms associated with cancer was in the gene NADH-ubiquinone oxidoreductase chain 3 (mt-ND3) and it was typical of haplogroup N. In prostate cancer, these mutations and polymorphisms involve a gene encoding subunit I of respiratory complex IV cytochrome c oxidase subunit 1 gene (COI). At present, a growing number of studies also address the impact of mtDNA polymorphisms on prognosis in cancer patients. Some of the mitochondrial DNA polymorphisms occur in both chronic disease and cancer, for instance polymorphism G5913A characteristic of prostate cancer and hypertension.


2017 ◽  
Vol 95 (8) ◽  
pp. 527-537 ◽  
Author(s):  
James W. Patterson ◽  
Anna M. Duncan ◽  
Kelsey C. McIntyre ◽  
Vett K. Lloyd

Ixodes scapularis Say, 1821 (the black-legged tick) is becoming established in Canada. The northwards expansion of I. scapularis leads to contact between I. scapularis and Ixodes cookei Packard, 1869, a well-established tick species in Eastern Canada. Examination of I. cookei and I. scapularis collected from New Brunswick revealed ticks with ambiguous morphologies, with either a mixture or intermediate traits typical of I. scapularis and I. cookei, including in characteristics typically used as species identifiers. Genetic analysis to determine if these ticks represent hybrids revealed that four had I. cookei derived mitochondrial DNA but I. scapularis nuclear DNA. In one case, the nuclear sequence showed evidence of heterozygosity for I. scapularis and I. cookei sequences, whereas in the others, the nuclear DNA appeared to be entirely derived from I. scapularis. These data strongly suggest genetic hybridization between these two species. Ixodes cookei and hybrid ticks were readily collected from humans and companion animals and specimens infected with Borrelia burgdorferi Johnson et al., 1984, the causative agent of Lyme disease, were identified. These findings raise the issue of genetic introgression of I. scapularis genes into I. cookei and warrant reassessment of the capacity of I. cookei and I. cookei × I. scapularis hybrids to vector Borrelia infection.


Author(s):  
George B. Stefano ◽  
Richard M. Kream

AbstractMitochondrial DNA (mtDNA) heteroplasmy is the dynamically determined co-expression of wild type (WT) inherited polymorphisms and collective time-dependent somatic mutations within individual mtDNA genomes. The temporal expression and distribution of cell-specific and tissue-specific mtDNA heteroplasmy in healthy individuals may be functionally associated with intracellular mitochondrial signaling pathways and nuclear DNA gene expression. The maintenance of endogenously regulated tissue-specific copy numbers of heteroplasmic mtDNA may represent a sensitive biomarker of homeostasis of mitochondrial dynamics, metabolic integrity, and immune competence. Myeloid cells, monocytes, macrophages, and antigen-presenting dendritic cells undergo programmed changes in mitochondrial metabolism according to innate and adaptive immunological processes. In the central nervous system (CNS), the polarization of activated microglial cells is dependent on strategically programmed changes in mitochondrial function. Therefore, variations in heteroplasmic mtDNA copy numbers may have functional consequences in metabolically competent mitochondria in innate and adaptive immune processes involving the CNS. Recently, altered mitochondrial function has been demonstrated in the progression of coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Accordingly, our review is organized to present convergent lines of empirical evidence that potentially link expression of mtDNA heteroplasmy by functionally interactive CNS cell types to the extent and severity of acute and chronic post-COVID-19 neurological disorders.


2021 ◽  
Vol 22 (9) ◽  
pp. 4594
Author(s):  
Andrea Stoccoro ◽  
Fabio Coppedè

Epigenetic modifications of the nuclear genome, including DNA methylation, histone modifications and non-coding RNA post-transcriptional regulation, are increasingly being involved in the pathogenesis of several human diseases. Recent evidence suggests that also epigenetic modifications of the mitochondrial genome could contribute to the etiology of human diseases. In particular, altered methylation and hydroxymethylation levels of mitochondrial DNA (mtDNA) have been found in animal models and in human tissues from patients affected by cancer, obesity, diabetes and cardiovascular and neurodegenerative diseases. Moreover, environmental factors, as well as nuclear DNA genetic variants, have been found to impair mtDNA methylation patterns. Some authors failed to find DNA methylation marks in the mitochondrial genome, suggesting that it is unlikely that this epigenetic modification plays any role in the control of the mitochondrial function. On the other hand, several other studies successfully identified the presence of mtDNA methylation, particularly in the mitochondrial displacement loop (D-loop) region, relating it to changes in both mtDNA gene transcription and mitochondrial replication. Overall, investigations performed until now suggest that methylation and hydroxymethylation marks are present in the mtDNA genome, albeit at lower levels compared to those detectable in nuclear DNA, potentially contributing to the mitochondria impairment underlying several human diseases.


1997 ◽  
Vol 77 (4) ◽  
pp. 515-521 ◽  
Author(s):  
Om P. Rajora ◽  
John D. Mahon

Mitochondrial DNA (mtDNA) and nuclear DNA (nuDNA) variations were examined in six cultivars of Lens culinaris ssp. culinaris and two (mtDNA) or one (nuDNA) accession(s) of L. culinaris ssp. orientalis. Total leaf DNA was digested with up to 15 restriction endonucleases, separated by agarose gel electrophoresis and trasferred to nylon membranes. To examine mtDNA variation, blots were probed with mtDNA coding for cytochrome c oxidase I (coxI) and ATPase 6 (atp6) of both wheat and maize as well as apocytochrome b (cob) and Orf25 (orf25) of wheat. Sixteen combinations of mtDNA probes and restriction enzymes revealed 34 fragments that discriminated between at least two lentil accessions. For nuDNA analysis, probes from cDNA and genomic DNA clones of lentil were used to probe the same blots, and identified 46 diagnostic fragments from 19 probe/enzyme combinations. Each lentil accession could be unequivocably distinguished from all others on the basis of both mitochondrial and nuclear DNA fragment patterns. The mitochondrial restriction fragment similarities ranged from 0.944 to 0.989, with a mean of 0.970 but nuclear restriction fragment similarities varied from 0.582 to 0.987, with a mean of 0.743. The apparent genetic relationships among accessions differed according to the source of DNA examined, although the commercial varieties Laird, Brewer and Redchief showed similarly high levels of mean similarity with both nuclear (0.982) and mitochondrial DNA (0.983). Key words: Lens culinaris Medik., genetic variation, mitochondrial, nuclear, DNA, lentil


2021 ◽  
Vol 22 (2) ◽  
pp. 551
Author(s):  
Luis Sendra ◽  
Alfredo García-Mares ◽  
María José Herrero ◽  
Salvador F. Aliño

Background: Mitochondrial DNA (mtDNA) diseases are a group of maternally inherited genetic disorders caused by a lack of energy production. Currently, mtDNA diseases have a poor prognosis and no known cure. The chance to have unaffected offspring with a genetic link is important for the affected families, and mitochondrial replacement techniques (MRTs) allow them to do so. MRTs consist of transferring the nuclear DNA from an oocyte with pathogenic mtDNA to an enucleated donor oocyte without pathogenic mtDNA. This paper aims to determine the efficacy, associated risks, and main ethical and legal issues related to MRTs. Methods: A bibliographic review was performed on the MEDLINE and Web of Science databases, along with searches for related clinical trials and news. Results: A total of 48 publications were included for review. Five MRT procedures were identified and their efficacy was compared. Three main risks associated with MRTs were discussed, and the ethical views and legal position of MRTs were reviewed. Conclusions: MRTs are an effective approach to minimizing the risk of transmitting mtDNA diseases, but they do not remove it entirely. Global legal regulation of MRTs is required.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Pappu Ananya ◽  
Michael Binder ◽  
Yang Wanjun ◽  
Rebecca McClellan ◽  
Brittney Murray ◽  
...  

Introduction: Mitochondrial heart disease due to pathogenic mitochondrial DNA (mtDNA) mutations can present as hypertrophic or dilated cardiomyopathy, ventricular arrhythmias and conduction disease. It is estimated that the mutation rate of mtDNA is 10 to 20-fold higher than that of nuclear DNA genes due to damage from reactive oxygen species released as byproducts during oxidative phosphorylation. When a new mtDNA mutation arises, it creates an intracellular heteroplasmic mixture of mutant and normal mtDNAs, called heteroplasmy. Heteroplasmy levels can vary in various tissues and examining mtDNA variants in blood may not be representative for the heart. The frequency of pathogenic mtDNA variants in myocardial tissues in unknown. Hypothesis: Human ventricular tissue may contain mtDNA mutations which can lead to alterations in mitochondrial function and increase individual risk for heart failure. Methods: Mitochondrial DNA was isolated from 61 left ventricular myocardial samples obtained from failing human hearts at the time of transplantation. mtDNA was sequenced with 23 primer pairs. In silico prediction of non-conservative missense variants was performed via PolyPhen-2. Heteroplasmy levels of variants predicted to be pathogenic were quantified using allele-specific ARMS-PCR. Results: We identified 21 mtDNA non-synonymous variants predicted to be pathogenic in 17 hearts. Notably, one heart contained four pathogenic mtDNA variants (ATP6: p.M104; ND5: p.P265S; ND4: p.N390S and p.L445F). Heteroplasmy levels exceeded 90% for all four variants in myocardial tissue and were significantly lower in blood. No pathogenic mtDNA variants were identified in 44 hearts. Hearts with mtDNA mutations had higher levels of myocardial GDF-15 (growth differentiation factor-15; 6.2±2.3 vs. 1.3±0.18, p=0.045), an established serum biomarker in various mitochondrial diseases. Conclusions: Non-synonymous mtDNA variants predicted to be pathogenic are common in human left ventricular tissue and may be an important modifier of the heart failure phenotype. Future studies are necessary to correlate myocardial mtDNA mutations with cardiovascular outcomes and to assess whether serum GDF-15 allows identifying patients with myocardial mtDNA mutations.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Amabel M Orogo ◽  
Dieter A Kubli ◽  
Anne N Murphy ◽  
Åsa B Gustafsson

Activation and participation of cardiac progenitor cells (CPCs) in regeneration are critical for effective repair in the wake of pathologic injury. Stem cell activation and commitment involve increased energy demand and mitochondrial biogenesis. To date, little attention has been paid to the importance of mitochondria in CPC survival, proliferation and differentiation. CPC function is reduced with age but the underlying mechanism is still unclear. Mitochondrial DNA (mtDNA) is more susceptible to oxidative attacks than nuclear DNA due to its proximity to the mitochondrial respiratory chain and lack of protective histone-like proteins. With age, mtDNA accumulates mutations that can impair mitochondrial respiration and increase ROS production. In this study, we examined the effects of accumulating mtDNA mutations on CPC proliferation and survival. We have found that incubation of uncommitted c-kit+ CPCs in differentiation medium increased mitochondrial mass and expansion of the mitochondrial network, which correlated with increased cell size and expression of cardiac lineage commitment markers. Differentiation activated mitochondrial biogenesis, increased mtDNA copy number, and enhanced oxidative capacity and cellular ATP levels in CPCs. To investigate the effect of mtDNA mutations and aging on CPC survival and function, we utilized a mouse model in which a mutation in the mtDNA polymerase γ (POLG m/m ) leads to accumulation of mtDNA mutations, mitochondrial dysfunction, and accelerated aging. Isolated CPCs from hearts of 2-month old POLG m/m mice had reduced proliferation and were more susceptible to oxidative stress and chemotherapeutic agents compared to WT CPCs. The majority of POLG m/m CPCs contained fragmented mitochondria as shown by immunostaining. Incubation in differentiation medium resulted in fewer GATA-4 positive POLG m/m CPCs compared to WT CPCs. The reduced differentiation in these POLG m/m CPCs correlated with reduced PGC-1α expression and OXPHOS protein levels, suggesting that mitochondrial biogenesis is impaired. These data demonstrate that mitochondria play a critical role in CPC function, and accumulation of mtDNA mutations impairs CPC function and reduces their repair potential.


Sign in / Sign up

Export Citation Format

Share Document