Energy Expenditure and Physical Activity in Clozapine use: Implications for Weight Management

2006 ◽  
Vol 40 (9) ◽  
pp. 810-814 ◽  
Author(s):  
Jenny-Kay Sharpe ◽  
Terry J. Stedman ◽  
Nuala M. Byrne ◽  
Connie Wishart ◽  
Andrew P. Hills

Objective: The management of atypical antipsychotic-induced weight gain is a significant challenge for people with mental illness. Fundamental research into energy metabolism in people taking atypical antipsychotic medication has been neglected. The current study of men with schizophrenia taking clozapine aimed to measure total energy expenditure (TEE) and energy expended on physical activity – activity energy expenditure (AEE) and to consider the clinical implications of the findings. Method: The well-established reference method of doubly labelled water (DLW) was used to measure TEE and AEE in men with schizophrenia who had been taking clozapine for more than 6 months. Resting energy expenditure was determined using indirect calorimetry. Results: The TEE was 2511 ± 606 kcal day−1 which was signifcantly different to World Health Organization recommendations (more than 20% lower). The Physical activity level (PAL) was 1.39 ± 0.27 confirming the sedentary nature of people with schizophrenia who take clozapine. Conclusions: The findings support the need for weight management strategies for people with schizophrenia who take clozapine to focus on the enhancement of energy expenditure by increasing physical activity and reducing inactivity or sedentary behaviours, rather than relying primarily on strategies to reduce energy intake.

2005 ◽  
Vol 93 (2) ◽  
pp. 199-203 ◽  
Author(s):  
Klaas R. Westerterp ◽  
Guy Plasqui ◽  
Annelies H. C. Goris

Although water is an important nutrient, there are no recommended intake values. Here, water intake, energy intake, physical activity and water loss was measured over 1 week in summer and in winter. Subjects were healthy volunteers, forty-two women and ten men, mean age of 29 (sd 7) years and mean BMI 21·8 (sd 2·2) kg/m2. Water intake was measured with a 7 d food and water record. Physical activity level (PAL) was observed as the ratio of total energy expenditure, as measured with doubly labelled water, to resting energy expenditure as measured in a respiration chamber. Water loss was measured with the deuterium elimination method. Water loss was highly reproducible and ranged from 0·20 to 0·35 l/MJ, independent of season and activity level, with higher values in women. Water loss was related to water and energy intake in summer (r 0·96, P<0·0001 and r 0·68, P<0·001, respectively) as well as in winter (r 0·98, P<0·0001 and r 0·63, P<0·01, respectively). Water loss was, for men, higher in subjects with a higher physical activity in summer (r 0·94, P<0·0001) and in winter (r 0·70, P<0·05). Normalizing water loss for differences in energy expenditure by expressing water loss in litres per MJ resulted in the same value for men in summer and winter. For women, physical activity-adjusted values of water loss were higher, especially in summer. In men, water turnover was determined by energy intake and physical activity, while seasonal effects appeared through energy expenditure. Women showed a higher water turnover that was unrelated to physical activity.


1996 ◽  
Vol 91 (2) ◽  
pp. 241-245 ◽  
Author(s):  
N. I. J. Paton ◽  
M. Elia ◽  
S. A. Jebb ◽  
G. Jennings ◽  
D. C. MacAllan ◽  
...  

1. Our objectives were to measure total energy expenditure, the daily variation in total energy expenditure and the physical activity level in a group of HIV-positive subjects using the bicarbonate-urea method. The study also aimed to assess the practicalities of using the bicarbonate-urea technique in free-living conditions. 2. Total energy expenditure was measured with the bicarbonate-urea method over 2 consecutive days (1 day in one subject) in 10 male patients with HIV infection (median CD4 count = 30). Resting energy expenditure was measured by indirect calorimetry. Physical activity level (total energy expenditure/resting energy expenditure) was calculated from these measurements and from activity diaries. 3. Resting energy expenditure was found to be 7.46 ± 0.87 MJ/day, 5% higher than predicted values. Total energy expenditure was 10.69 ± 1.95 MJ/day with an intra-individual day-to-day variation of 6 ± 6%. The measured physical activity level was 1.42 ± 0.14, higher than the diary estimate of 1.34 ± 0.16 (P = 0.029), and there were large inter-method differences in individual values. The subcutaneous infusion of bicarbonate was well tolerated and did not seem to restrict normal activities. 4. Total energy expenditure was not elevated in the group of HIV-positive subjects when compared with reference values for normal subjects. The physical activity level of the patients in this study was lower than that measured using other techniques in healthy young men, but was compatible with that expected for people leading a sedentary lifestyle. Reductions in physical activity in patients with HIV are likely to contribute to the wasting process and physical activity level may thus be a clinically useful measure. This study has also provided the first tracer estimate of the day-to-day variation in total energy expenditure. The bicarbonate-urea method represents an important new investigative tool for measuring total energy expenditure which has previously only been possible within the confines of a whole-body calorimeter or using the expensive doubly labelled water method.


1999 ◽  
Vol 2 (3a) ◽  
pp. 335-339 ◽  
Author(s):  
Marleen A. Van Baak

AbstractEnergy expenditure rises above resting energy expenditure when physical activity is performed. The activity-induced energy expenditure varies with the muscle mass involved and the intensity at which the activity is performed: it ranges between 2 and 18 METs approximately. Differences in duration, frequency and intensity of physical activities may create considerable variations in total energy expenditure. The Physical Activity Level (= total energy expenditure divided by resting energy expenditure) varies between 1.2 and 2.2–2.5 in healthy adults. Increases in activity-induced energy expenditure have been shown to result in increases in total energy expenditure, which are usually greater than the increase in activity-induced energy expenditure itself. No evidence for increased spontaneous physical activity, measured by diary, interview or accelerometer, was found. However, this does not exclude increased physical activity that can not be measured by these methods. Part of the difference may also be explained by the post-exercise elevation of metabolic rate.If changes in the level of physical activity affect energy balance, this should result in changes in body mass or body composition. Modest decreases of body mass and fat mass are found in response to increases in physical activity, induced by exercise training, which are usually smaller than predicted from the increase in energy expenditure. This indicates that the training-induced increase in total energy expenditure is at least partly compensated for by an increase in energy intake. There is some evidence that the coupling between energy expenditure and energy intake is less at low levels of physical activity. Increasing the level of physical activity for weight loss may therefore be most effective in the most sedentary individuals.


2005 ◽  
Vol 8 (7a) ◽  
pp. 940-952 ◽  
Author(s):  
Anna Ferro-Luzzi

AbstractObjectiveIn anticipation of the revision of the 1985 Food and Agricultural Organization/World Health Organization/United Nations University (FAO/ WHO/UNU) Expert Consultation Report on ‘Energy and Protein Requirements’, recent scientific knowledge on the principles underlying the estimation of energy requirement is reviewed.DesignThis paper carries out a historical review of the scientific rationale adopted by previous FAO/WHO technical reports on energy requirement, discusses the concepts used in assessing basal metabolic rate (BMR), energy expenditure, physical activity level (PAL), and examines current controversial areas. Recommendations and areas of future research are presented.ConclusionsThe database of the BMR predictive equations developed by the 1985 FAO/WHO/UNU Expert Consultation Report on Energy and Protein Requirements needs updating and expansion, applying strict and transparent selection criteria. The existence of an ethnic/tropical factor capable of affecting BMR is not supported by the available evidence. The factorial approach for the calculation of energy requirement, as set out in the 1985 report, should be retained. The estimate should have a normative rather than a prescriptive nature, except for the allowance provided for extra physical activity for sedentary populations, and for the prevention of non-communicable chronic diseases. The estimate of energy requirement of children below the age of 10 years should be made on the basis of energy expenditure rather than energy intake. The evidence of the existence of an ethnic/tropical factor is conflicting and no plausible mechanism has as yet been put forward.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sarah A. Elliott ◽  
Kimberley A. Baxter ◽  
Peter S. W. Davies ◽  
Helen Truby

Introduction.Self-reported measures of habitual physical activity rely completely on the respondent’s ability to provide accurate information on their own physical activity behaviours. Our aim was to investigate if obese adolescents could accurately report their physical activity levels (PAL) using self-reported diaries.Methods.Total energy expenditure (TEE) was measured using doubly labelled water (DLW) and resting energy expenditure (REE) was measured via indirect calorimetry. Activity energy expenditure (AEE) and PAL values were derived from measured TEE and REE. Self-reported, four-day activity diaries were used to calculate daily MET values and averaged to give an estimated PAL value (ePAL).Results.Twenty-two obese adolescents, mean age13.2±1.8years, mean BMI31.3±4.6 kg/m2, completed the study. No significant differences between mean measured and estimated PAL values were observed (1.37±0.13versus1.40±0.34,P=0.74). Bland Altman analysis illustrated a significant relationship (r=-0.76,P<0.05) between the two methods; thus the bias was not consistent across a range of physical activity levels, with the more inactive overreporting their physical activity.Conclusion.At an individual level, obese adolescents are unlikely to be able to provide an accurate estimation of their own activity.


2003 ◽  
Vol 90 (6) ◽  
pp. 1133-1139 ◽  
Author(s):  
Elaine C. Rush ◽  
Lindsay D. Plank ◽  
Peter S. W. Davies ◽  
Patsy Watson ◽  
Clare R. Wall

Body fatness and the components of energy expenditure in children aged 5–14 years were investigated. In a group of seventy-nine healthy children (thirty-nine female, forty male), mean age 10·0 (sd 2·8) years, comprising twenty-seven Maori, twenty-six Pacific Island and twenty-six European, total energy expenditure (TEE) was determined over 10 d using the doubly-labelled water method. Resting metabolic rate (RMR) was measured by indirect calorimetry and physical activity level (PAL) was calculated as TEE:RMR. Fat-free mass (FFM), and hence fat mass, was derived from the 18O-dilution space using appropriate values for FFM hydration in children. Qualitative information on physical activity patterns was obtained by questionnaire. Maori and Pacific children had a higher BMI than European children (P<0·003), but % body fat was similar for the three ethnic groups. The % body fat increased with age for girls (r 0·42, P=0·008), but not for boys. Ethnicity was not a significant predictor of RMR adjusted for FFM and fat mass. TEE and PAL, adjusted for body weight and age, were higher in Maori than European children (P<0·02), with Pacific children having intermediate values. PAL was inversely correlated with % body fat in boys (r −0·43, P=0·006), but was not significantly associated in girls. The % body fat was not correlated with reported time spent inactive or outdoors. Ethnic-related differences in total and activity-related energy expenditure that might account for higher obesity rates in Maori and Pacific children were not seen. Low levels of physical activity were associated with increased body fat in boys but not in girls.


2012 ◽  
Vol 24 (4) ◽  
pp. 589-602 ◽  
Author(s):  
Nerissa Campbell ◽  
Harry Prapavessis ◽  
Casey Gray ◽  
Erin McGowan ◽  
Elaine Rush ◽  
...  

Background/Objective: This study investigated the validity of the Actiheart device for estimating free-living physical activity energy expenditure (PAEE) in adolescents. Subjects/Methods: Total energy expenditure (TEE) was measured in eighteen Canadian adolescents, aged 15–18 years, by DLW. Physical activity energy expenditure was calculated as 0.9 X TEE minus resting energy expenditure, assuming 10% for the thermic effect of feeding. Participants wore the chest mounted Actiheart device which records simultaneously minute-by-minute acceleration (ACC) and heart rate (HR). Using both children and adult branched equation modeling, derived from laboratory-based activity, PAEE was estimated from the ACC and HR data. Linear regression analyses examined the association between PAEE derived from the Actiheart and DLW method where DLW PAEE served as the dependent variable. Measurement of agreement between the two methods was analyzed using the Bland-Altman procedure. Results: A nonsignificant association was found between the children derived Actiheart and DLW PAEE values (R = .23, R2 = .05, p = .36); whereas a significant association was found between the adult derived Actiheart and DLW PAEE values (R = .53, R2 = .29, p < .05). Both the children and adult equation models lead to overestimations of PAEE by the Actiheart compared with the DLW method, by a mean difference of 31.42 kcal·kg−·d−1 (95% limits of agreement: −45.70 to −17.15 kcal·kg−1·d−1 and 9.80 kcal·kg−1·d−1 (95% limits of agreement: −21.22-1.72 kcal·kg−1·d−1), respectively. Conclusion: There is relatively poor measurement of agreement between the Actiheart and DLW for assessing free-living PAEE in adolescents. Future work should develop group based branched equation models specifically for adolescents to improve the utility of the device in this population.


2011 ◽  
Vol 23 (2) ◽  
pp. 261-269 ◽  
Author(s):  
Anja Carlsohn ◽  
Friederike Scharhag-Rosenberger ◽  
Michael Cassel ◽  
Josefine Weber ◽  
Annette de Guzman Guzman ◽  
...  

Adequate energy intake in adolescent athletes is considered important. Total energy expenditure (TEE) can be calculated from resting energy expenditure (REE) and physical activity level (PAL). However, validated PAL recommendations are available for adult athletes only. Purpose was to comprise physical activity data in adolescent athletes and to establish PAL recommendations for this population. In 64 competitive athletes (15.3 ± 1.5yr, 20.5 ± 2.0kg/m2) and 14 controls (15.1 ± 1.1yr, 21 ± 2.1kg/m2) TEE was calculated using 7-day activity protocols validated against doubly-labeled water. REE was estimated by Schofield-HW equation, and PAL was calculated as TEE:REE. Observed PAL in adolescent athletes (1.90 ± 0.35) did not differ compared with controls (1.84 ± 0.32, p = .582) and was lower than recommended for adult athletes by the WHO. In conclusion, applicability of PAL values recommended for adult athletes to estimate energy requirements in adolescent athletes must be questioned. Instead, a PAL range of 1.75–2.05 is suggested.


2021 ◽  
Vol 12 ◽  
Author(s):  
Petra Frings-Meuthen ◽  
Sara Henkel ◽  
Michael Boschmann ◽  
Philip D. Chilibeck ◽  
José Ramón Alvero Cruz ◽  
...  

Resting energy expenditure (REE) is determined mainly by fat-free mass (FFM). FFM depends also on daily physical activity. REE normally decreases with increased age due to decreases in FFM and physical activity. Measuring REE is essential for estimating total energy expenditure. As such, there are a number of different equations in use to predict REE. In recent years, an increasing number of older adults continue to participate in competitive sports creating the surge of master athletes. It is currently unclear if these equations developed primarily for the general population are also valid for highly active, older master athletes. Therefore, we tested the validity of six commonly-used equations for predicting REE in master athletes. In conjunction with the World Masters Athletic Championship in Malaga, Spain, we measured REE in 113 master athletes by indirect calorimetry. The most commonly used equations to predict REE [Harris &amp; Benedict (H&amp;B), World Health Organization (WHO), Müller (MÜL), Müller-FFM (MÜL-FFM), Cunningham (CUN), and De Lorenzo (LOR)] were tested for their accuracies. The influences of age, sex, height, body weight, FFM, training hours per week, phase angle, ambient temperature, and athletic specialization on REE were determined. All estimated REEs for the general population differed significantly from the measured ones (H&amp;B, WHO, MÜL, MÜL-FFM, CUN, all p &lt; 0.005). The equation put forward by De Lorenzo provided the most accurate prediction of REE for master athletes, closely followed by FFM-based Cunningham’s equation. The accuracy of the remaining commonly-used prediction equations to estimate REE in master athletes are less accurate. Body weight (p &lt; 0.001), FFM (p &lt; 0.001), FM (p = 0.007), sex (p = 0.045) and interestingly temperature (p = 0.004) are the significant predictors of REE. We conclude that REE in master athletes is primarily determined by body composition and ambient temperature. Our study provides a first estimate of energy requirements for master athletes in order to cover adequately athletes’ energy and nutrient requirements to maintain their health status and physical performance.


2017 ◽  
Vol 77 (1) ◽  
pp. 4-10 ◽  
Author(s):  
Klaas R. Westerterp

The doubly labelled water method for the measurement of total daily energy expenditure (TDEE) over 1–3 weeks under daily living conditions is the indicated method to study effects of exercise and extreme environments on energy balance. Subjects consume a measured amount of doubly labelled water (2H218O) to increase background enrichment of body water for 18O and 2H, and the subsequent difference in elimination rate between 18O and 2H, as measured in urine, saliva or blood samples, is a measure for carbon dioxide production and thus allows calculation of TDEE. The present review describes research showing that physical activity level (PAL), calculated as TDEE (assessed with doubly labelled water) divided by resting energy expenditure (REE, PAL = TDEE/REE), reaches a maximum value of 2·00–2·40 in subjects with a vigorously active lifestyle. Higher PAL values, while maintaining energy balance, are observed in professional athletes consuming additional energy dense foods to compete at top level. Exercise training can increase TDEE/REE in young adults to a value of 2·00–2·40, when energy intake is unrestricted. Furthermore, the review shows an exercise induced increase in activity energy expenditure can be compensated by a reduction in REE and by a reduction in non-exercise physical activity, especially at a negative energy balance. Additionally, in untrained subjects, an exercise-induced increase in activity energy expenditure is compensated by a training-induced increase in exercise efficiency.


Sign in / Sign up

Export Citation Format

Share Document