scholarly journals GKAP, a Novel Synaptic Protein That Interacts with the Guanylate Kinase-like Domain of the PSD-95/SAP90 Family of Channel Clustering Molecules

1997 ◽  
Vol 136 (3) ◽  
pp. 669-678 ◽  
Author(s):  
Eunjoon Kim ◽  
Scott Naisbitt ◽  
Yi-Ping Hsueh ◽  
Anuradha Rao ◽  
Adam Rothschild ◽  
...  

The molecular mechanisms underlying the organization of ion channels and signaling molecules at the synaptic junction are largely unknown. Recently, members of the PSD-95/SAP90 family of synaptic MAGUK (membrane-associated guanylate kinase) proteins have been shown to interact, via their NH2-terminal PDZ domains, with certain ion channels (NMDA receptors and K+ channels), thereby promoting the clustering of these proteins. Although the function of the NH2-terminal PDZ domains is relatively well characterized, the function of the Src homology 3 (SH3) domain and the guanylate kinase-like (GK) domain in the COOH-terminal half of PSD-95 has remained obscure. We now report the isolation of a novel synaptic protein, termed GKAP for guanylate kinase-associated protein, that binds directly to the GK domain of the four known members of the mammalian PSD-95 family. GKAP shows a unique domain structure and appears to be a major constituent of the postsynaptic density. GKAP colocalizes and coimmunoprecipitates with PSD-95 in vivo, and coclusters with PSD-95 and K+ channels/ NMDA receptors in heterologous cells. Given their apparent lack of guanylate kinase enzymatic activity, the fact that the GK domain can act as a site for protein– protein interaction has implications for the function of diverse GK-containing proteins (such as p55, ZO-1, and LIN-2/CASK).

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4034-4034 ◽  
Author(s):  
Emanuele De Lorenzo ◽  
Serena Pillozzi ◽  
Marika Masselli ◽  
Olivia Crociani ◽  
Andrea Becchetti ◽  
...  

Abstract Targeted therapies are considerably changing the treatment and prognosis of hematologic malignancies. The progressive elucidation of the molecular mechanisms that regulate establishment and progression of tumours is leading to more specific and efficacious pharmacological approaches. In this picture, ion channels represent a relatively unexpected, but very promising players. In particular hERG1 channel expression is altered in many primary leukemias and frequently turn out to exert pleiotropic effects on cancer cell physiology, interaction with the external matrix and stimulation of angiogenesis. hERG1 channels can also trigger intracellular signaling cascades by forming protein complexes with integrins as well as other membrane proteins. These results convey the hypothesis that drugs acting on ion channels could have therapeutic value in the treatment of cancers. Recent evidence suggests that, in certain tumours, application of channel inhibitors does in fact impair cell growth both in vitro and in vivo. A major objection to such a pharmacological approach is the presence of serious side effects, particularly cardiac arrhythmias, especially in the case of hERG1 blockers. This flaw is now being overcome by different approaches, ie the identification of non-arrhythmogenic compounds or calibration of treatment by exploitation of drug selectivity for specific channel states. We tested this possibility in a preclinical model represented by NOD-SCID mice injected with acute leukemia cells and treated with hERG1 blockers. Previous experiments, using NOD/SCID mice injected with AML cells, had shown that herg1 over-expression confers a greater malignancy (Pillozzi S et al, Blood110:1238–50, 2007). The treatment of mice injected with AML cells with specific hERG1 blockers as well as with anti-hERG1 mAb, led to a significant decrease of AML engraftment into the BM and migration into the PB and peripheral organs (Pillozzi S et al, Blood ASH110: 877, 2007). We recently extended our work to an AML cell line stably transfected with the herg1 cDNA (HL60-hERG1), as well as to a ALL cell line (697), which endogenously shows a high herg1 expression. Three groups of treatment were established: control group, E4031-treated group (i.p. starting 1 week after inoculum, 20 mg/kg, daily for 2 weeks) and E4031-treated group (as above, daily until the end of experiment). Various morphometric characteristics of microvessels (density, total vascular area, several size- and shape-related parameters), highlighted through anti-CD34 staining, were quantitated in the BM. Overall, the group of mice treated with hERG1 inhibitors had decreased number of microvessels, decreased total vascular area and size-related parameters. Moreover, E4031 treated mice showed a longer survival compared to the untreated ones. Finally, we evaluated cardiac toxicity in vivo of E4031: no significant variation in ECG parameters were detected, nor gross morphological alterations. Nevertheless, we are also testing different pharmacological categories of hERG1 blockers, such the anti-psychotic drug sertindole, proven to be avoid of any cardiac side effect, despite a strong block of hERG1.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Swetha E Murthy ◽  
Adrienne E Dubin ◽  
Tess Whitwam ◽  
Sebastian Jojoa-Cruz ◽  
Stuart M Cahalan ◽  
...  

Mechanically activated (MA) ion channels convert physical forces into electrical signals, and are essential for eukaryotic physiology. Despite their importance, few bona-fide MA channels have been described in plants and animals. Here, we show that various members of the OSCA and TMEM63 family of proteins from plants, flies, and mammals confer mechanosensitivity to naïve cells. We conclusively demonstrate that OSCA1.2, one of the Arabidopsis thaliana OSCA proteins, is an inherently mechanosensitive, pore-forming ion channel. Our results suggest that OSCA/TMEM63 proteins are the largest family of MA ion channels identified, and are conserved across eukaryotes. Our findings will enable studies to gain deep insight into molecular mechanisms of MA channel gating, and will facilitate a better understanding of mechanosensory processes in vivo across plants and animals.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Paula A Pousinha ◽  
Xavier Mouska ◽  
Elisabeth F Raymond ◽  
Carole Gwizdek ◽  
Gihen Dhib ◽  
...  

The amyloid precursor protein (APP) harbors physiological roles at synapses and is central to Alzheimer’s disease (AD) pathogenesis. Evidence suggests that APP intracellular domain (AICD) could regulate synapse function, but the underlying molecular mechanisms remain unknown. We addressed AICD actions at synapses, per se, combining in vivo AICD expression, ex vivo AICD delivery or APP knock-down by in utero electroporation of shRNAs with whole-cell electrophysiology. We report a critical physiological role of AICD in controlling GluN2B-containing NMDA receptors (NMDARs) at immature excitatory synapses, via a transcription-dependent mechanism. We further show that AICD increase in mature neurons, as reported in AD, alters synaptic NMDAR composition to an immature-like GluN2B-rich profile. This disrupts synaptic signal integration, via over-activation of SK channels, and synapse plasticity, phenotypes rescued by GluN2B antagonism. We provide a new physiological role for AICD, which becomes pathological upon AICD increase in mature neurons. Thus, AICD could contribute to AD synaptic failure.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3340
Author(s):  
Lena Maltan ◽  
Hadil Najjar ◽  
Adéla Tiffner ◽  
Isabella Derler

Calcium ion channels are involved in numerous biological functions such as lymphocyte activation, muscle contraction, neurotransmission, excitation, hormone secretion, gene expression, cell migration, memory, and aging. Therefore, their dysfunction can lead to a wide range of cellular abnormalities and, subsequently, to diseases. To date various conventional techniques have provided valuable insights into the roles of Ca2+ signaling. However, their limited spatiotemporal resolution and lack of reversibility pose significant obstacles in the detailed understanding of the structure–function relationship of ion channels. These drawbacks could be partially overcome by the use of optogenetics, which allows for the remote and well-defined manipulation of Ca²⁺-signaling. Here, we review the various optogenetic tools that have been used to achieve precise control over different Ca2+-permeable ion channels and receptors and associated downstream signaling cascades. We highlight the achievements of optogenetics as well as the still-open questions regarding the resolution of ion channel working mechanisms. In addition, we summarize the successes of optogenetics in manipulating many Ca2+-dependent biological processes both in vitro and in vivo. In summary, optogenetics has significantly advanced our understanding of Ca2+ signaling proteins and the used tools provide an essential basis for potential future therapeutic application.


2019 ◽  
Vol 26 (25) ◽  
pp. 4799-4831 ◽  
Author(s):  
Jiahua Cui ◽  
Xiaoyang Liu ◽  
Larry M.C. Chow

P-glycoprotein, also known as ABCB1 in the ABC transporter family, confers the simultaneous resistance of metastatic cancer cells towards various anticancer drugs with different targets and diverse chemical structures. The exploration of safe and specific inhibitors of this pump has always been the pursuit of scientists for the past four decades. Naturally occurring flavonoids as benzopyrone derivatives were recognized as a class of nontoxic inhibitors of P-gp. The recent advent of synthetic flavonoid dimer FD18, as a potent P-gp modulator in reversing multidrug resistance both in vitro and in vivo, specifically targeted the pseudodimeric structure of the drug transporter and represented a new generation of inhibitors with high transporter binding affinity and low toxicity. This review concerned the recent updates on the structure-activity relationships of flavonoids as P-gp inhibitors, the molecular mechanisms of their action and their ability to overcome P-gp-mediated MDR in preclinical studies. It had crucial implications on the discovery of new drug candidates that modulated the efflux of ABC transporters and also provided some clues for the future development in this promising area.


2019 ◽  
Vol 26 (39) ◽  
pp. 6976-6990 ◽  
Author(s):  
Ana María González-Paramás ◽  
Begoña Ayuda-Durán ◽  
Sofía Martínez ◽  
Susana González-Manzano ◽  
Celestino Santos-Buelga

: Flavonoids are phenolic compounds widely distributed in the human diet. Their intake has been associated with a decreased risk of different diseases such as cancer, immune dysfunction or coronary heart disease. However, the knowledge about the mechanisms behind their in vivo activity is limited and still under discussion. For years, their bioactivity was associated with the direct antioxidant and radical scavenging properties of phenolic compounds, but nowadays this assumption is unlikely to explain their putative health effects, or at least to be the only explanation for them. New hypotheses about possible mechanisms have been postulated, including the influence of the interaction of polyphenols and gut microbiota and also the possibility that flavonoids or their metabolites could modify gene expression or act as potential modulators of intracellular signaling cascades. This paper reviews all these topics, from the classical view as antioxidants in the context of the Oxidative Stress theory to the most recent tendencies related with the modulation of redox signaling pathways, modification of gene expression or interactions with the intestinal microbiota. The use of C. elegans as a model organism for the study of the molecular mechanisms involved in biological activity of flavonoids is also discussed.


2018 ◽  
Vol 15 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Barbara D'Orio ◽  
Anna Fracassi ◽  
Maria Paola Cerù ◽  
Sandra Moreno

Background: The molecular mechanisms underlying Alzheimer's disease (AD) are yet to be fully elucidated. The so-called “amyloid cascade hypothesis” has long been the prevailing paradigm for causation of disease, and is today being revisited in relation to other pathogenic pathways, such as oxidative stress, neuroinflammation and energy dysmetabolism. The peroxisome proliferator-activated receptors (PPARs) are expressed in the central nervous system (CNS) and regulate many physiological processes, such as energy metabolism, neurotransmission, redox homeostasis, autophagy and cell cycle. Among the three isotypes (α, β/δ, γ), PPARγ role is the most extensively studied, while information on α and β/δ are still scanty. However, recent in vitro and in vivo evidence point to PPARα as a promising therapeutic target in AD. Conclusion: This review provides an update on this topic, focussing on the effects of natural or synthetic agonists in modulating pathogenetic mechanisms at AD onset and during its progression. Ligandactivated PPARα inihibits amyloidogenic pathway, Tau hyperphosphorylation and neuroinflammation. Concomitantly, the receptor elicits an enzymatic antioxidant response to oxidative stress, ameliorates glucose and lipid dysmetabolism, and stimulates autophagy.


2018 ◽  
Vol 18 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Jiaqiang Wang ◽  
Chien-shan Cheng ◽  
Yan Lu ◽  
Xiaowei Ding ◽  
Minmin Zhu ◽  
...  

Background: Propofol, a widely used intravenous anesthetic agent, is traditionally applied for sedation and general anesthesia. Explanation: Recent attention has been drawn to explore the effect and mechanisms of propofol against cancer progression in vitro and in vivo. Specifically, the proliferation-inhibiting and apoptosis-inducing properties of propofol in cancer have been studied. However, the underlying mechanisms remain unclear. Conclusion: This review focused on the findings within the past ten years and aimed to provide a general overview of propofol's malignance-modulating properties and the potential molecular mechanisms.


Sign in / Sign up

Export Citation Format

Share Document