scholarly journals Natural Killer Cell–mediated Lysis of Autologous Cells Modified by Gene Therapy

1999 ◽  
Vol 189 (12) ◽  
pp. 1855-1862 ◽  
Author(s):  
Concetta Liberatore ◽  
Marusca Capanni ◽  
Nicola Albi ◽  
Isabella Volpi ◽  
Elena Urbani ◽  
...  

This study investigated the role of natural killer (NK) cells as effectors of an immune response against autologous cells modified by gene therapy. T lymphocytes were transduced with LXSN, a retroviral vector adopted for human gene therapy that carries the selectable marker gene neo, and the autologous NK response was evaluated. We found that (i) infection with LXSN makes cells susceptible to autologous NK cell–mediated lysis; (ii) expression of the neo gene is responsible for conferring susceptibility to lysis; (iii) lysis of neo-expressing cells is clonally distributed and mediated only by NK clones that exhibit human histocompatibility leukocyte antigen (HLA)-Bw4 specificity and bear KIR3DL1, a Bw4-specific NK inhibitory receptor; and (iv) the targets are cells from HLA-Bw4+ individuals. Finally, neo peptides anchoring to the Bw4 allele HLA-B27 interfered with KIR3DL1-mediated recognition of HLA-B27, i.e., they triggered NK lysis. Moreover, neo gene mutations preventing translation of  two of the four potentially nonprotective peptides reduced KIR3DL1+ NK clone–mediated autologous lysis. Thus, individuals expressing Bw4 alleles possess an NK repertoire with the potential to eliminate autologous cells modified by gene therapy. By demonstrating that NK cells can selectively detect the expression of heterologous genes, these observations provide a general model of the NK cell–mediated control of viral infections.

1996 ◽  
Vol 184 (6) ◽  
pp. 2243-2250 ◽  
Author(s):  
Nicholas M. Valiante ◽  
Joseph H. Phillips ◽  
Lewis L. Lanier ◽  
Peter Parham

The killer cell inhibitory receptors (KIR) of human natural killer (NK) cells recognize human leukocyte antigen class I molecules and inhibit NK cell cytotoxicity through their interaction with protein tyrosine phosphatases (PTP). Here, we report that KIR recognition of class I ligands inhibits distal signaling events and ultimately NK cell cytotoxicity by blocking the association of an adaptor protein (pp36) with phospholipase C-γ in NK cells. In addition, we demonstrate that pp36 can serve as a substrate in vitro for the KIR-associated PTP, PTP-1C (also called SHP-1), and that recognition of class I partially disrupts tyrosine phosphorylation of NK cell proteins, providing evidence for KIR-induced phosphatase activity.


Author(s):  
Christopher Maucourant ◽  
Iva Filipovic ◽  
Andrea Ponzetta ◽  
Soo Aleman ◽  
Martin Cornillet ◽  
...  

Understanding innate immune responses in COVID-19 is important for deciphering mechanisms of host responses and interpreting disease pathogenesis. Natural killer (NK) cells are innate effector lymphocytes that respond to acute viral infections, but might also contribute to immune pathology. Here, using 28-color flow cytometry, we describe a state of strong NK cell activation across distinct subsets in peripheral blood of COVID-19 patients, a pattern mirrored in scRNA-seq signatures of lung NK cells. Unsupervised high-dimensional analysis identified distinct immunophenotypes that were linked to disease severity. Hallmarks of these immunophenotypes were high expression of perforin, NKG2C, and Ksp37, reflecting a high presence of adaptive NK cell expansions in circulation of patients with severe disease. Finally, arming of CD56bright NK cells was observed in course of COVID-19 disease states, driven by a defined protein-protein interaction network of inflammatory soluble factors. This provides a detailed map of the NK cell activation-landscape in COVID-19 disease.


Blood ◽  
2010 ◽  
Vol 115 (6) ◽  
pp. 1166-1174 ◽  
Author(s):  
Cyril Fauriat ◽  
Martin A. Ivarsson ◽  
Hans-Gustaf Ljunggren ◽  
Karl-Johan Malmberg ◽  
Jakob Michaëlsson

Abstract Expression of inhibitory killer cell immunoglobulin-like receptors (KIRs) specific for self–major histocompatibility complex (MHC) class I molecules provides an educational signal that generates functional natural killer (NK) cells. However, the effects of activating KIRs specific for self-MHC class I on NK-cell education remain elusive. Here, we provide evidence that the activating receptor KIR2DS1 tunes down the responsiveness of freshly isolated human NK cells to target cell stimulation in donors homozygous for human leukocyte antigen (HLA)–C2, the ligand of KIR2DS1. The tuning was apparent in KIR2DS1+ NK cells lacking expression of inhibitory KIRs and CD94/NKG2A, as well as in KIR2DS1+ NK cells coexpressing the inhibitory MHC class I–specific receptors CD94/NKG2A and KIR2DL3, but not KIR2DL1. However, the tuning of responsiveness was restricted to target cell recognition because KIR2DS1+ NK cells responded well to stimulation with exogenous cytokines. Our results provide the first example of human NK-cell education by an activating KIR and suggest that the education of NK cells via activating KIRs is a mechanism to secure tolerance that complements education via inhibitory KIRs.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 866
Author(s):  
Baca Chan ◽  
Maja Arapović ◽  
Laura Masters ◽  
Francois Rwandamuiye ◽  
Stipan Jonjić ◽  
...  

As the largest herpesviruses, the 230 kb genomes of cytomegaloviruses (CMVs) have increased our understanding of host immunity and viral escape mechanisms, although many of the annotated genes remain as yet uncharacterised. Here we identify the m15 locus of murine CMV (MCMV) as a viral modulator of natural killer (NK) cell immunity. We show that, rather than discrete transcripts from the m14, m15 and m16 genes as annotated, there are five 3′-coterminal transcripts expressed over this region, all utilising a consensus polyA tail at the end of the m16 gene. Functional inactivation of any one of these genes had no measurable impact on viral replication. However, disruption of all five transcripts led to significantly attenuated dissemination to, and replication in, the salivary glands of multiple strains of mice, but normal growth during acute infection. Disruption of the m15 locus was associated with heightened NK cell responses, including enhanced proliferation and IFNγ production. Depletion of NK cells, but not T cells, rescued salivary gland replication and viral shedding. These data demonstrate the identification of multiple transcripts expressed by a single locus which modulate, perhaps in a concerted fashion, the function of anti-viral NK cells.


Endocrines ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 121-132
Author(s):  
Erik D. Hanson ◽  
Lauren C. Bates ◽  
Kaileigh Moertl ◽  
Elizabeth S. Evans

Natural killer (NK) cells from the innate immune system are integral to overall immunity and also in managing the tumor burden during cancer. Breast (BCa) and prostate cancer (PCa) are the most common tumors in U.S. adults. Both BCa and PCa are frequently treated with hormone suppression therapies that are associated with numerous adverse effects including direct effects on the immune system. Regular exercise is recommended for cancer survivors to reduce side effects and improve quality of life. Acute exercise is a potent stimulus for NK cells in healthy individuals with current evidence indicating that NK mobilization in individuals with BCa and PCa is comparable. NK cell mobilization results from elevations in shear stress and catecholamine levels. Despite a normal NK cell response to exercise, increases in epinephrine are attenuated in BCa and PCa. The significance of this potential discrepancy still needs to be determined. However, alterations in adrenal hormone signaling are hypothesized to be due to chronic stress during cancer treatment. Additional compensatory factors induced by exercise are reviewed along with recommendations on standardized approaches to be used in exercise immunology studies involving oncology populations.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2796
Author(s):  
Aicha E. Quamine ◽  
Mallery R. Olsen ◽  
Monica M. Cho ◽  
Christian M. Capitini

Treatment of metastatic pediatric solid tumors remain a significant challenge, particularly in relapsed and refractory settings. Standard treatment has included surgical resection, radiation, chemotherapy, and, in the case of neuroblastoma, immunotherapy. Despite such intensive therapy, cancer recurrence is common, and most tumors become refractory to prior therapy, leaving patients with few conventional treatment options. Natural killer (NK) cells are non-major histocompatibility complex (MHC)-restricted lymphocytes that boast several complex killing mechanisms but at an added advantage of not causing graft-versus-host disease, making use of allogeneic NK cells a potential therapeutic option. On top of their killing capacity, NK cells also produce several cytokines and growth factors that act as key regulators of the adaptive immune system, positioning themselves as ideal effector cells for stimulating heavily pretreated immune systems. Despite this promise, clinical efficacy of adoptive NK cell therapy to date has been inconsistent, prompting a detailed understanding of the biological pathways within NK cells that can be leveraged to develop “next generation” NK cell therapies. Here, we review advances in current approaches to optimizing the NK cell antitumor response including combination with other immunotherapies, cytokines, checkpoint inhibition, and engineering NK cells with chimeric antigen receptors (CARs) for the treatment of pediatric solid tumors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shoeib Moradi ◽  
Sanda Stankovic ◽  
Geraldine M. O’Connor ◽  
Phillip Pymm ◽  
Bruce J. MacLachlan ◽  
...  

AbstractThe closely related inhibitory killer-cell immunoglobulin-like receptors (KIR), KIR2DL2 and KIR2DL3, regulate the activation of natural killer cells (NK) by interacting with the human leukocyte antigen-C1 (HLA-C1) group of molecules. KIR2DL2, KIR2DL3 and HLA-C1 are highly polymorphic, with this variation being associated with differences in the onset and progression of some human diseases. However, the molecular bases underlying these associations remain unresolved. Here, we determined the crystal structures of KIR2DL2 and KIR2DL3 in complex with HLA-C*07:02 presenting a self-epitope. KIR2DL2 differed from KIR2DL3 in docking modality over HLA-C*07:02 that correlates with variabilty of recognition of HLA-C1 allotypes. Mutagenesis assays indicated differences in the mechanism of HLA-C1 allotype recognition by KIR2DL2 and KIR2DL3. Similarly, HLA-C1 allotypes differed markedly in their capacity to inhibit activation of primary NK cells. These functional differences derive, in part, from KIR2DS2 suggesting KIR2DL2 and KIR2DL3 binding geometries combine with other factors to distinguish HLA-C1 functional recognition.


2020 ◽  
Vol 117 (21) ◽  
pp. 11636-11647 ◽  
Author(s):  
Philippa M. Saunders ◽  
Bruce J. MacLachlan ◽  
Phillip Pymm ◽  
Patricia T. Illing ◽  
Yuanchen Deng ◽  
...  

Micropolymorphisms within human leukocyte antigen (HLA) class I molecules can change the architecture of the peptide-binding cleft, leading to differences in peptide presentation and T cell recognition. The impact of such HLA variation on natural killer (NK) cell recognition remains unclear. Given the differential association of HLA-B*57:01 and HLA-B*57:03 with the control of HIV, recognition of these HLA-B57 allomorphs by the killer cell immunoglobulin-like receptor (KIR) 3DL1 was compared. Despite differing by only two polymorphic residues, both buried within the peptide-binding cleft, HLA-B*57:01 more potently inhibited NK cell activation. Direct-binding studies showed KIR3DL1 to preferentially recognize HLA-B*57:01, particularly when presenting peptides with positively charged position (P)Ω-2 residues. In HLA-B*57:01, charged PΩ-2 residues were oriented toward the peptide-binding cleft and away from KIR3DL1. In HLA-B*57:03, the charged PΩ-2 residues protruded out from the cleft and directly impacted KIR3DL1 engagement. Accordingly, KIR3DL1 recognition of HLA class I ligands is modulated by both the peptide sequence and conformation, as determined by the HLA polymorphic framework, providing a rationale for understanding differences in clinical associations.


Cancers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 2 ◽  
Author(s):  
Marisa Market ◽  
Katherine Baxter ◽  
Leonard Angka ◽  
Michael Kennedy ◽  
Rebecca Auer

Natural Killer (NK) cells are granular lymphocytes of the innate immune system that are able to recognize and kill tumor cells without undergoing clonal selection. Discovered over 40 years ago, they have since been recognized to possess both cytotoxic and cytokine-producing effector functions. Following trauma, NK cells are suppressed and their effector functions are impaired. This is especially important for cancer patients undergoing the removal of solid tumors, as surgery has shown to contribute to the development of metastasis and cancer recurrence postoperatively. We have recently shown that NK cells are critical mediators in the formation of metastasis after surgery. While research into the mechanism(s) responsible for NK cell dysfunction is ongoing, knowledge of these mechanisms will pave the way for perioperative therapeutics with the potential to improve cancer outcomes by reversing NK cell dysfunction. This review will discuss mechanisms of suppression in the postoperative environment, including hypercoagulability, suppressive soluble factors, the expansion of suppressive cell populations, and how this affects NK cell biology, including modulation of cell surface receptors, the potential for anergy, and immunosuppressive NK cell functions. This review will also outline potential immunotherapies to reverse postoperative NK dysfunction, with the goal of preventing surgery-induced metastasis.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hee Young Na ◽  
Yujun Park ◽  
Soo Kyung Nam ◽  
Jiwon Koh ◽  
Yoonjin Kwak ◽  
...  

Abstract Background Natural killer (NK) cells mediate the anti-tumoral immune response as an important component of innate immunity. The aim of this study was to investigate the prognostic significance and functional implication of NK cell-associated surface receptors in gastric cancer (GC) by using multiplex immunohistochemistry (mIHC). Methods We performed an mIHC on tissue microarray slides, including 55 GC tissue samples. A total of 11 antibodies including CD57, NKG2A, CD16, HLA-E, CD3, CD20, CD45, CD68, CK, SMA, and ki-67 were used. CD45 + CD3-CD57 + cells were considered as CD57 + NK cells. Results Among CD45 + immune cells, the proportion of CD57 + NK cell was the lowest (3.8%), whereas that of CD57 + and CD57- T cells (65.5%) was the highest, followed by macrophages (25.4%), and B cells (5.3%). CD57 + NK cells constituted 20% of CD45 + CD57 + immune cells while the remaining 80% were CD57 + T cells. The expression of HLA-E in tumor cells correlated with that in tumoral T cells, B cells, and macrophages, but not CD57 + NK cells. The higher density of tumoral CD57 + NK cells and tumoral CD57 + NKG2A + NK cells was associated with inferior survival. Conclusions Although the number of CD57 + NK cells was lower than that of other immune cells, CD57 + NK cells and CD57 + NKG2A + NK cells were significantly associated with poor outcomes, suggesting that NK cell subsets play a critical role in GC progression. NK cells and their inhibitory receptor, NKG2A, may be potential targets in GC.


Sign in / Sign up

Export Citation Format

Share Document