Magnetic behavior of Magneto-Rheological Foam under Uniaxial Compression Strain

Author(s):  
gildas diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickael Lallart ◽  
Jean Yves Cavaille

Abstract This study reports the development of a Magneto-Rheological Foam, which consists in a porous matrix filled by ferromagnetic particles. The porous matrix of such a composite being easily deformable, large magnetic properties changes are expected. The measurements of the magnetic properties of such a Magneto-Rheological Foam submitted to a compressive strain are reported. Main aspect of the magnetic properties is the low field magnetic permeability as the function of the compression and filling factor. Then, larger field magnetization measurement allowed to investigate the saturation field as a function of the filling factor. Because of the large amount of pores in the material, the magnetic relative permeability, µr, is quite small (µr ~1). However, these materials can be easily deformed over a large range of strain providing important relative variation of the magnetic properties under mechanical solicitation. The composite magnetic permeability is increasing under compression for all the considered filling factors. A model is then developed to understand the variation of the permeability with the strain. Hence, from a simple concept consisting of taking advantage of high deformation of foams, the present study demonstrates the interest of such a highly compressible while cheap composite for obtaining a large magneto-rheological effect.

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 781
Author(s):  
Miriam Sánchez-Pérez ◽  
Juan Pedro Andrés ◽  
Juan Antonio González ◽  
Ricardo López Antón ◽  
Marco Antonio López de la Torre ◽  
...  

We present a detailed study about the substrate-induced strain and thickness effects on the structure and magnetic properties of La0.5Sr0.5CoO3 films. The in-plane tensile or compressive strain imposed by four different substrates configures an in-plane or out-of-plane easy axis, respectively. The presence of a soft magnetic phase at the interface is also conditioned by the type of strain. The obtained results are discussed in terms of the different anisotropies that participate and control the final magnetic behavior. The relevance of these results lies in the feasibility of La0.5Sr0.5CoO3 in memory applications and spintronic devices.


2017 ◽  
Vol 13 (1) ◽  
pp. 4486-4494 ◽  
Author(s):  
G.El Damrawi ◽  
F. Gharghar

Cerium oxide in borate glasses of composition xCeO2·(50 − x)PbO·50B2O3 plays an important role in changing both microstructure and magnetic behaviors of the system. The structural role of CeO2 as an effective agent for cluster and crystal formation in borate network is clearly evidenced by XRD technique. Both structure and size of well-formed cerium separated clusters have an effective influence on the structural properties. The cluster aggregations are documented to be found in different range ordered structures, intermediate and long range orders are the most structures in which cerium phases are involved. The nano-sized crystallized cerium species in lead borate phase are evidenced to have magnetic behavior.  The criteria of building new specific borate phase enriched with cerium as ferrimagnetism has been found to keep the magnetization in large scale even at extremely high temperature. Treating the glass thermally or exposing it to an effective dose of ionized radiation is evidenced to have an essential change in magnetic properties. Thermal heat treatment for some of investigated materials is observed to play dual roles in the glass matrix. It can not only enhance alignment processes of the magnetic moment but also increases the capacity of the crystallite species in the magnetic phases. On the other hand, reverse processes are remarked under the effect of irradiation. The magnetization was found to be lowered, since several types of the trap centers which are regarded as defective states can be produced by effect of ionized radiation. 


2020 ◽  
Vol 10 (2) ◽  
pp. 152-156 ◽  
Author(s):  
Muhammad Hanif bin Zahari ◽  
Beh Hoe Guan ◽  
Lee Kean Chuan ◽  
Afiq Azri bin Zainudin

Background: Rare earth materials are known for its salient electrical insulation properties with high values of electrical resistivity. It is expected that the substitution of rare earth ions into spinel ferrites could significantly alter its magnetic properties. In this work, the effect of the addition of Samarium ions on the structural, morphological and magnetic properties of Ni0.5Zn0.5SmxFe2-xO4 (x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10) synthesized using sol-gel auto combustion technique was investigated. Methods: A series of Samarium-substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5SmxFe2-xO4 where x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10) were synthesized by sol-gel auto-combustion technique. Structural, morphological and magnetic properties of the samples were examined through X-Ray Diffraction (XRD), Field-Emission Scanning Electron Microscope (FESEM) and Vibrating Sample Magnetometer (VSM) measurements. Results: XRD patterns revealed single-phased samples with spinel cubic structure up to x= 0.04. The average crystallite size of the samples varied in the range of 41.8 – 85.6 nm. The prepared samples exhibited agglomerated particles with larger grain size observed in Sm-substituted Ni-Zn ferrite as compared to the unsubstituted sample. The prepared samples exhibited typical soft magnetic behavior as evidenced by the small coercivity field. The magnetic saturation, Ms values decreased as the Sm3+ concentration increases. Conclusion: The substituted Ni-Zn ferrites form agglomerated particles inching towards more uniform microstructure with each increase in Sm3+ substitution. The saturation magnetization of substituted samples decreases with the increase of samarium ion concentration. The decrease in saturation magnetization can be explained based on weak super exchange interaction between A and B sites. The difference in magnetic properties between the samples despite the slight difference in Sm3+ concentrations suggests that the properties of the NiZnFe2O4 can be ‘tuned’, depending on the present need, through the substitution of Fe3+ with rare earth ions.


2014 ◽  
Vol 43 (19) ◽  
pp. 7263-7268 ◽  
Author(s):  
Tiffany M. Smith ◽  
Michael Tichenor ◽  
Yuan-Zhu Zhang ◽  
Kim R. Dunbar ◽  
Jon Zubieta

The three-dimensional [Co3(OH)2(H2O)2(aptet)4] exhibits magnetic properties consistent with a ferrimagnetic chain with the non-compensating resultant moment of one Co(ii) per trinuclear Co(ii) subunit and ac magnetic susceptibility indicative of glassy-like magnetic behavior.


2015 ◽  
Vol 815 ◽  
pp. 227-232 ◽  
Author(s):  
Ying Yu ◽  
Shu Hong Xie ◽  
Qing Feng Zhan

A practical way to manipulate the magnetic anisotropy of magnetostrictive FeGa thin films grown on flexible polyethylene terephthalate (PET) substrates is introduced in this study. The effect of film thickness on magnetic properties and magnetostriction constant of polycrystalline FeGa thin films was investigated. The anisotropy field Hk of flexible FeGa films, i.e., the saturation field determined by fitting the hysteresis curves measured along the hard axis, was enhanced with increasing the tensile strain applied along the easy axis of the thin films, but this enhancement via strain became unconspicuous with increasing the thickness of FeGa films. In order to study the magnetic sensitivity of thin films responding to the external stress, we applied different strains on these films and measure the corresponding anisotropy field. Moreover, the effective magnetostriction constant of FeGa films was calculated from the changes of both anisotropy field and external strain based on the Villari effect. A Neel’s phenomenological model was developed to illustrate that the effective anisotropy field of FeGa thin films was contributed from both the constant volume term and the inverse thickness dependent surface term. Therefore, the magnetic properties for the volume and surface of FeGa thin films were different, which has been verified in this work by using vibrating sample magnetometer (VSM) and magneto-optic Kerr effect (MOKE) system. The anisotropy field contributed by the surface of FeGa film and obtained by MOKE is smaller than that contributed by the film volume and measured by VSM. We ascribed the difference in Hk to the relaxation of the effective strain applied on the films with increasing the thickness of films.


2012 ◽  
Vol 1 (1) ◽  
pp. 5-15 ◽  
Author(s):  
Peter Fischer ◽  
Charles S. Fadley

AbstractThe magnetic properties of matter continue to be a vibrant research area driven both by scientific curiosity to unravel the basic physical processes which govern magnetism and the vast and diverse utilization of magnetic materials in current and future devices, e.g., in information and sensor technologies. Relevant length and time scales approach fundamental limits of magnetism and with state-of-the-art synthesis approaches we are able to create and tailor unprecedented properties. Novel analytical tools are required to match these advances and soft X-ray probes are among the most promising ones. Strong and element-specific magnetic X-ray dichroism effects as well as the nanometer wavelength of photons and the availability of fsec short and intense X-ray pulses at upcoming X-ray sources enable unique experimental opportunities for the study of magnetic behavior. This article provides an overview of recent achievements and future perspectives in magnetic soft X-ray spectromicroscopies which permit us to gain spatially resolved insight into the ultrafast spin dynamics and the magnetic properties of buried interfaces of advanced magnetic nanostructures.


2012 ◽  
Vol 430-432 ◽  
pp. 1979-1983
Author(s):  
Wei Bang Feng ◽  
Xue Yang ◽  
Zhi Qiang Lv

Magneto-rheological elastomer( MR elastomer) is an emerging intelligent material made up of macromolecule polymer and magnetic particles. While a promising wide application it has in the fields of warships vibration controlling for its controllable mechanical, electrical and magnetic properties by external magnetic field, design and application of devices based on it are facing great limitations imposed by its poor performance in mechanical properties and magneto effect. Aiming at developing a practical MR elastomer, a new confecting method was proposed in this paper. Then, following this new method and using a specificly designed solidifying matrix, an amido- polyester MR elastomer was developed with its mechanical property systemically explored.


2011 ◽  
Vol 43 (2) ◽  
pp. 175-182 ◽  
Author(s):  
S. Djukic ◽  
V. Maricic ◽  
A. Kalezic-Glisovic ◽  
L. Ribic-Zelenovic ◽  
S. Randjic ◽  
...  

In this study it was investigated influence of temperature and frequency on permeability, coercivity and power loses of Fe81B13Si4C2 amorphous alloy. Magnetic permeability measurements performed in nonisothermal and isothermal conditions was confirmed that efficient structural relaxation was occurred at temperature of 663 K. This process was performed in two steps, the first one is kinetic and the second one is diffuse. Activation energies of these processes are: Ea1 = 52.02 kJ/mol for kinetic and Ea2 = 106.9 kJ/mol for diffuse. It was shown that after annealing at 663 K coercivity decrease about 30% and therefore substantial reduction in power loses was attained. Investigated amorphous alloy satisfied the criteria for signal processing devices that work in mean frequency domain.


Author(s):  
Jenifer Gómez-Pastora ◽  
James Kim ◽  
Victor Multanen ◽  
Mitchell Weigand ◽  
Nicole Walters ◽  
...  

The presence of iron in circulating monocytes is well known as they play an essential role in iron recycling. It has been demonstrated that the iron content of blood cells can be measured through their magnetic behavior; however, the magnetic properties of different monocyte subtypes remain unknown. In this study, we report for the first time, the magnetic behavior of classical, intermediate and non-classical monocytes, which is related to their iron storage capacity. The magnetic properties of monocytes were compared to other blood cells, such as lymphocytes and red blood cells in the oxyhemoglobin and methemoglobin states, and a cancer cell type. For this analysis, we used an instrument referred to as Cell Tracking Velocimetry (CTV), which quantitatively characterizes the magnetic behavior of biological entities. Our results demonstrate that significant fractions of the intermediate and non-classical monocytes have high magnetophoretic mobilities, equivalent to methemoglobin red blood cells and higher than the classical subset, suggesting their higher iron storage capacities. Moreover, our findings have implications for the immunomagnetic separation industry; we demonstrate that negative magnetic isolation techniques for recovering monocytes from blood should be used with caution, as it is possible to lose magnetic monocytes when using this technique.


2015 ◽  
Vol 17 (37) ◽  
pp. 24038-24047 ◽  
Author(s):  
Hui Li ◽  
Wei Chen ◽  
Yuanhui Sun ◽  
Xuri Huang ◽  
Guangtao Yu

Noncovalent surface-modification by a polymer can be an effective strategy to modulate the electronic and magnetic behavior of zSiCNRs.


Sign in / Sign up

Export Citation Format

Share Document