scholarly journals Operational features of battery-powered electric vehicles in Russia and methods of assessing a state of health of traction batteries

2021 ◽  
Vol 2061 (1) ◽  
pp. 012013
Author(s):  
R Biksaleev ◽  
A Klimov ◽  
R Malikov ◽  
K Karpukhin

Abstract Electric vehicle manufacturers pay particular attention to climatic conditions in the Russian Federation, seeing that chemical reaction rates usually decrease when the environment temperature drops. The analysis of ambient temperature data in the region where electric vehicles will most likely be used aims to select extreme temperatures for calculating powers of a thermostat control system for traction batteries. An electric vehicle simulation model to calculate the power of the thermostat control system for traction batteries is described. An empirical model to assess a state of health of traction batteries is selected. This simulation model adequately reflects thermal processes in a traction battery and can be used for further research.

2011 ◽  
Vol 121-126 ◽  
pp. 3406-3410 ◽  
Author(s):  
Yang Yang ◽  
Yang Yang ◽  
Da Tong Qin ◽  
Jin Li

A new kind of pressure coordinated control system suite of regenerative braking system for hybrid electric vehicles (HEV) is proposed in this paper on the basis of appropriate transformation on traditional hydraulic braking system with ABS. AMEsim modular simulation platform is used to build a simulation model of the system. Dynamic performances of the key components and system are simulated and analyzed. And the simulation results show the effectiveness and feasibility of the pressure coordinated control system, which lays the foundation of the design and optimization for the regenerative braking system.


2012 ◽  
Vol 591-593 ◽  
pp. 1212-1216 ◽  
Author(s):  
Kang Huang ◽  
Min Liang Yan ◽  
Zhao Wang ◽  
Dan Dan Zhu

This paper puts forward a research design method of pure electric vehicle automatic transmission shift schedule based on the urban road conditions in connection with the problems of the low average speed, the high percentage of idle, and frequently shifting in pure electric vehicle. In order to improve the performance of pure electric vehicle automatic transmission and the using efficiency of the motor, this paper formulates a fuzzy shift schedule in the view of the economy. At the same time, this paper supplies a vehicle simulation in the view of economy through a application instance and the MATLAB / SIMULINK / ADVISOR software. The simulation results show that the fuzzy shift strategy can meet the requirements of the economy very well.


2017 ◽  
Vol 10 (2) ◽  
pp. 266 ◽  
Author(s):  
Lluc Canals Casals ◽  
Beatriz Amante García ◽  
Lázaro V. Cremades

Purpose: On pursue of economic revenue, the second life of electric vehicle batteries is closer to reality. Common electric vehicles reach the end of life when batteries loss between a 20 or 30% of its capacity. However, battery technology is evolving fast and the next generation of electric vehicles will have between 300 and 400 km range. This study will analyze different End of Life scenarios according to battery capacity and their possible second life’s opportunities. Additionally, an analysis of the electric vehicle market will define possible locations for battery repurposing or remanufacturing plants.Design/methodology/approach: Calculating the barycenter of the electric vehicle market offers an optimal location to settle the battery repurposing plant from a logistic and environmental perspective.This paper presents several possible applications and remanufacture processes of EV batteries according to the state of health after their collection, analyzing both the direct reuse of the battery and the module dismantling strategy.Findings: The study presents that Netherlands is the best location for installing a battery repurposing plant because of its closeness to EV manufacturers and the potential European EV markets, observing a strong relation between the EV market share and the income per capita.15% of the batteries may be send back to the an EV as a reposition battery, 60% will be prepared for stationary or high capacity installations such as grid services, residential use, Hybrid trucks or electric boats, and finally, the remaining 25% is to be dismantled into modules or cells for smaller applications, such as bicycles or assisting robots.Originality/value: Most of studies related to the EV battery reuse take for granted that they will all have an 80% of its capacity. This study analyzes and proposes a distribution of battery reception and presents different 2nd life alternatives according to their state of health.


2014 ◽  
Vol 556-562 ◽  
pp. 1879-1883 ◽  
Author(s):  
Zhe Ci Tang ◽  
Chun Lin Guo ◽  
Dong Ming Jia

The more popular of electric vehicles is, the higher the load capacity of the battery is in the power system, therefore, the charging and discharging technology is particularly important. This paper introduces several electric vehicle battery charging methods commonly used at present, describes working principle of the bidirectional DC/DC converter in detail in the battery charging and discharging process, and the bidirectional DC/DC charging and discharging control strategy. Finally, the electric vehicle battery charging and discharging simulation model is built, the validity of the electric vehicle battery charging and discharging model is verified based on control strategies mentioned herein by use of simulation.


2013 ◽  
Vol 397-400 ◽  
pp. 1858-1862 ◽  
Author(s):  
Ling Shan Chen ◽  
Xiao Le Wang ◽  
Xiang Er Huang ◽  
Pin Gan ◽  
Wei Cheng

To study the performance of auxiliary power unit in extended range electric vehicle, simulation model of auxiliary power unit and its control system are established with MATLAB/Simulink. The method of decoupling control achieved engine speed control and generator torque control. Finally actual power responds change of required power quickly.


Author(s):  
Christian Angerer ◽  
Sebastian Krapf ◽  
Alexander Buß ◽  
Markus Lienkamp

The authors provide a copious literate review on powertrain design optimization for electric vehicle (EV) powertrains. The review shows a gap in the state of science regarding the consideration of all customer relevant requirements. Existing approaches either focus on performance and energy consumption or concentrate on vehicle dynamics. Based on this insight, the authors analyze customer requirements and derive all vehicle properties that are influenced by the powertrain concept. They find that costs, longitudinal performance, lateral dynamics, off-road capabilities and energy consumption are key vehicle properties. The powertrain concept affects all these properties and thus determines the satisfaction of customer requirements. Subsequently the authors describe a vehicle simulation model that represents all predefined customer requirements in dependence on the powertrain concept design.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6874
Author(s):  
Georg Göhler ◽  
Anna-Lena Klingler ◽  
Florian Klausmann ◽  
Dieter Spath

Intelligent integration of decentralised energy resources, local storage and direct consumption are key factors in achieving the transformation of the energy system. In this study, we present a modular simulation concept that allows the planning of decentralised energy systems for buildings and building blocks. In comparison to related studies, we use a simulation model for energy planning with a high time-resolution from the perspective of the energy system planner. In this study, we address the challenges of the grid connection in combination with an increasing number of electric vehicles (EV) in the future. The here developed model is applied for an innovative building block in Germany with a photovoltaic (PV) system, a combined heat and power (CHP) unit, battery storage and electric vehicles. The results of the simulation are validated with real-life data to illustrate the practical relevance and show that our simulation model is able to support the planning of decentralised energy systems. We demonstrate that without anticipating future electric vehicle charging, the system configurations could be sub-optimal if complete self-sufficiency is the objective: in our case study, the rate of self-sufficiency of the net-zero energy building will be lowered from 100% to 91% if considering electric vehicles. Furthermore, our simulation shows that a peak minimising operation strategy with a battery can prevent grid overloads caused by EV charging in the future. Simulating different battery operation strategies can further help to implement the most useful strategy, without interruption of the current operation.


2014 ◽  
Vol 490-491 ◽  
pp. 1120-1125 ◽  
Author(s):  
Fen Zhu Ji ◽  
Xiao Xu Zhou ◽  
Wen Bo Zhu

Motor of electric vehicle is able to be used to brake regeneratively, so braking energy can be recycled. Braking stability of electric vehicles with electro-hydraulic hybrid braking system can be influenced by braking force distribution between hydraulic braking force and regenerative braking force. In order to research on braking stability and braking energy recovery, simulation platform of electro-hydraulic hybrid brake system based on Carsim and Matlab/Simulink is built, and a control strategy of electro-hydraulic hybrid brake were proposed. The vehicle simulation models with electro-hydraulic hybrid brake system and with conventional hydraulic braking system were applied the brake on different adhesion coefficient separately. The simulation results show when electric vehicle is in the conditions of low braking intensity, all vehicle braking force is provided by regenerative braking force, and braking energy can be not only recycled, but brake performance requirement can also be satisfied; when electric vehicle is in the conditions of moderate braking intensity, regenerative braking and hydraulic braking are coordinated with each other, electro-hydraulic hybrid brake can not only satisfy the same and better brake performance, but also braking energy can be recycled and demand of hydraulic pressure can be reduced.


2020 ◽  
Vol 164 ◽  
pp. 03016
Author(s):  
Anastasia Gorbunova ◽  
Ilya Anisimov

The development of electric vehicles, which is also observed in the Russian Federation at present, leads to the need to create a charging infrastructure. Variable operating conditions, and in particular low ambient temperature, cause difficulties in the use of electric vehicles, which are associated with a low power reserve and increased energy consumption in the winter. These features of the electric vehicle operation in the Russian Federation can lead to an increase in the number of charging stations needed to create a developed infrastructure, and, therefore, can increase capital costs. The purpose of this research is to identify patterns of the electric vehicle charging station operation in the regional infrastructure using the example of Tyumen city to develop a methodology for calculating their quantity that can satisfy demand in variable climatic conditions with a low capital cost. As a result of this study, patterns of change in the number of charging sessions, its duration and the amount of energy transferred to electric vehicles from the ambient temperature were obtained.


Sign in / Sign up

Export Citation Format

Share Document