scholarly journals Physical and mechanical properties of the surface of pine wood modified with an organomineral composition

2021 ◽  
Vol 2124 (1) ◽  
pp. 012019
Author(s):  
A O Belyaev ◽  
V E Danilov ◽  
M V Morozova

Abstract The percentage of wooden buildings damaged or even lost due to the lack or insufficient technical measures for their preservation is growing every year. This fact makes it mandatory to treat the surface of wood building materials with protective and decorative agents. Within the framework of this study, a multifunctional protective composition for wood was developed that can increase its physical and mechanical properties. Modification of the wood surface with organomineral compositions leads to an increase in its density, hardness and strength. The hardness of the treated wood is 24% higher and the compressive strength along the fiber is 20% higher than that of untreated wood. After treatment, the surface of the wood darkened and slightly yellowed, which does not prevent its use in the construction and reconstruction of buildings. The results of measuring the color coordinates of the surface of the modified samples indicate the stability and durability of the developed protective coating even after 4 months of exposure to atmospheric conditions. Judging by the slight return of the color coordinates of the treated wood back to values of the original wood, it can be concluded that the composition is partially washed out.

Author(s):  
V. D. Cherepanov ◽  
S. G. D’yachkova ◽  
I. I. Kuzora ◽  
D. A. Dubrovskii ◽  
V. I. Lukina

Abstract: Using the example of oil road bitumen grades BND 100/130, BND 130/200 and BND 70/100, this article studies the transformation of oil dispersed systems under various logistic schemes of operation. This research focuses on the influence of the conditions for storing road bitumens of different grades on their physical and mechanical properties and group hydrocarbon composition during transportation from the manufacturer to the consumer. The results show that a change in the physical and mechanical properties of road bitumens during high-temperature storage is related to the changes in the group hydrocarbon composition due to the hydrocarbons autooxidation and destabilization of the colloidal structure of dispersal systems. The conditions for storing bitumen with a minimum change in its quality indicators have been determined. It has been established that storage of bitumen under atmospheric conditions allows preserving its original properties without significant changes. There is evidence that nitrogen purging significantly reduces the effect of homolytic processes leading to the transformation of oil dispersed systems during further transportation from the manufacturer to the consumer. Experimental data confirm that of all basic physical and mechanical properties of bitumen, “the depth of penetration of needle” is the most sensitive index, while the “softening temperature” index, frequently used for quality control of bitumen, is inertial. Determining the change in penetration, depending on the duration of storing bitumen, has required formulating a special equation. It has been established that when storing road bitumen at a temperature of 180 ºС, for each hour the index of the penetration depth of the needle at 25 º decreases by 0.8 units. Organizational and technical measures have been determined to ensure the stability of the road bitumen quality during manufacture, storage and transportation to consumers.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012059
Author(s):  
Shengfu Wang ◽  
Lechen Yan ◽  
Kaixi Xue ◽  
Liang Lv ◽  
Dongjie Zhang ◽  
...  

Abstract Processing and storage requirements for metal residues are becoming stricter to achieve the carbon neutralization target. The physical and mechanical properties of tailings affect the stability of tailing dams. Metal tailings can be used as secondary resources, and it is easy to pollute the environment under poorly managed conditions. Therefore, it is necessary and urgent to reuse these deposits such as iron tailings, copper tailings, zinc tailings et al. This article discusses the current research on the mechanical properties of metal tailings and its engineering application. Based on previous research, it is pointed out that there still needs more attention on the mechanical properties of metal tailing sands, especially under different conditions like dry-wet, freeze-thaw, dynamic loads and large-scale application. In the future, research on the filling of metal tailings as roadbed and new building materials will be one of the directions to solve the problem of tailing pond accumulation.


2021 ◽  
Vol 45 (5) ◽  
pp. 417-421
Author(s):  
Laid Baali ◽  
Larbi Belagraa ◽  
Mohamed Aziz Chikouche ◽  
Leila Zeghichi

The use of waste and by-products has been for many decades for the manufacturing of building materials such as concrete and mortars. That responds simultaneously to reasons of economy of natural resources in aggregates (C&D waste) and the possibility of recovering industrial waste additions as replacement in composites. The present study focuses on the use of plastic waste fibers embedded in the cement matrix of self-compacting concrete SCC to improve its properties, either rheological mainly, the stability at fresh state or mechanical responses such as compressive and tensile strengths at hard state. This incorporation of plastic fiber reinforcement on the structure matrix could result an alternative SCC composite as a ductile material with enhanced properties. In this context, the self-compacting composites by adding a variable percentage of plastic fibers at 0.5, 1, 1.5% is formulated. Hence, the effect of plastic fibers waste on the rheological and mechanical properties of SCC is assessed. The obtained results in the present study let us to conclude the beneficial effect of such inclusion of plastic fibers on this new confected SCC fiber composition with acceptable rheological, physical and mechanical properties compared to those of a normal SCC concrete.


2012 ◽  
Vol 576 ◽  
pp. 314-317
Author(s):  
Sinin Hamdan ◽  
M. Saiful Islam

Five types of selected tropical light hardwoods were chemically modified with benzene diazonium salt to improve their physical and mechanical properties. Benzene diazonium salt underwent a coupling reaction with wood which was confirmed through FT-IR analysis. The compressive modulus of the treated wood increased, whereas modulus of rupture was shown to decrease on treatment. The modified wood samples had higher hardness (Shore D) values compared to that of the control ones.


2019 ◽  
Vol 964 ◽  
pp. 115-123
Author(s):  
Sigit Tri Wicaksono ◽  
Hosta Ardhyananta ◽  
Amaliya Rasyida ◽  
Feisha Fadila Rifki

Plastic waste is majority an organic material that cannot easily decomposed by bacteria, so it needs to be recycled. One of the utilization of plastic waste recycling is become a mixture in the manufacture of building materials such as concrete, paving block, tiles, roof. This experiment purpose to find out the effect of addition of variation of LDPE and PP thermoplastic binder to physical and mechanical properties of LDPE/PP/Sand composite for construction material application. In this experiment are using many tests, such are SEM, FTIR, compression strength, density, water absorbability, and hardness. the result after the test are the best composition of composite PP/LDPE/sand is 70/0/30 because its have compression strength 14,2 MPa, while density value was 1.30 g/cm3, for the water absorbability is 0.073%, and for the highest hardness is 62.3 hardness of shore D. From the results obtained, composite material can be classified into construction materials for mortar application S type with average compression strength is 12.4 MPa.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lijuan Ping ◽  
Yubo Chai ◽  
Fangwen Zhang ◽  
Bailing Sun ◽  
Junliang Liu

In the study, we report that a safe and simple way for upgrading inferior rubber wood through the combined modification of environment-friendly MUG resin was synthesized from glyoxal, melamine, urea, and other additives. MUG-treated wood samples were prepared with six different MUG resin concentrations (5, 15, 25, 35, 45, and 55 wt %) into the wood matrix and then heated and polymerized to form a solid and hydrophobic MUG resin in the wood scaffold, and the physico-mechanical properties were evaluated. As the MUG resin concentration increased, the weight percent gain and density increased, water uptake and leachability decreased, and the antiswelling efficiency increased at first and then decreased. MUG-treated wood sample can be prepared when the MUG resin concentration was set as 25%, and the physical properties of treated wood was optimum. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis showed that the MUG resin is widely distributed in the cell lumens and cell walls. With enhanced physico-mechanical properties, MUG-treated wood sample can be well used as a promising alternative to existing engineered wood products for structural applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Neslihan Doğan-Sağlamtimur ◽  
Adnan Güven ◽  
Ahmet Bilgil

Pumice, cements (CEM I- and CEM II-type), waste fly and bottom ashes (IFA, GBA, and BBA) supplied from international companies were used to produce lightweight building materials, and physical-mechanical properties of these materials were determined. Axial compressive strength (ACS) values were found above the standards of 4 and 8 MPa (Bims Concrete (BC) 40 and 80 kgf/cm2 class) for cemented (CEM I) pumice-based samples. On the contrary, the ACS values of the pumice-based cemented (CEM II) samples could not be reached to these standards. Best ACS results (compatible with BC80) from these cemented lightweight material samples produced with the ashes were found in 50% mixing ratio as 10.6, 13.2, and 20.5 MPa for BBA + CEM I, GBA + CEM II, and IFA + CEM I, respectively, and produced with pumice were found as 8.4 MPa (same value) for GBA + pumice + CEM II (in 25% mixing ratio), BBA + pumice + CEM I (in 100% mixing ratio), and pumice + IFA + CEM I (in 100% mixing ratio), respectively. According to the results, cemented ash-based lightweight building material produced with and without pumice could widely be used for constructive purposes. As a result of this study, an important input to the ecosystem has been provided using waste ashes, whose storage constitutes a problem.


Author(s):  
K. Z. Tilloev ◽  
S. V. Kondakov

The construction and method of calculating the stability of a crawler excavator equipped with a new working body (cone roller) are considered. The calculation is made on two working positions (longitudinal and transverse) of the excavator, provided that the excavator must apply the maximum force on the working body at an angle of 90°. The force applied by the excavator boom to the cone roller during the introduction depends on the physical and mechanical properties of the compacted soil. The calculation method differs in that during the compaction of the roadbed, the cone sinks into the ground, and the excavator tends to roll in the direction of the rear track support roller, in contrast to the traditional danger of tipping over the front support roller when working with a bucket.


Author(s):  
Viola Hospodarova ◽  
Nadezda Stevulova ◽  
Vojtech Vaclavik ◽  
Tomas Dvorsky ◽  
Jaroslav Briancin

Nowadays, construction sector is focusing in developing sustainable, green and eco-friendly building materials. Natural fibre is growingly being used in composite materials. This paper provides utilization of cellulose fibres as reinforcing agent into cement composites/plasters. Provided cellulosic fibres coming from various sources as bleached wood pulp and recycled waste paper fibres. Differences between cellulosic fibres are given by their physical characterization, chemical composition and SEM micrographs. Physical and mechanical properties of fibre-cement composites with fibre contents 0.2; 0.3and 0.5% by weight of filler and binder were investigated. Reference sample without fibres was also produced. The aim of this work is to investigate the effects of cellulose fibres on the final properties (density, water absorbability, coefficient of thermal conductivity and compressive strength) of the fibrecement plasters after 28 days of hardening. Testing of plasters with varying amount of cellulose fibres (0.2, 0.3 and 0.5 wt. %) has shown that the resulting physical and mechanical properties depend on the amount, the nature and structure of the used fibres. Linear dependences of compressive strength and thermal conductivity on density for plasters with cellulosic fibres adding were observed.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 377 ◽  
Author(s):  
Mariana Domnica Stanciu ◽  
Daniela Sova ◽  
Adriana Savin ◽  
Nicolae Ilias ◽  
Galina A. Gorbacheva

Because of the uneven colour of black locust wood, different technologies are used to change the colour, the bestknown being chemical and thermal treatments. Some of them affect the mechanical properties of wood, such as elasticity modulus, strength, durability. This study aims to compare the physical and mechanical properties of black locust wood control samples and treated wood samples with ammonia hydroxide, in terms of density profile, colour values (CIE L*, a*, b*), mechanical properties of samples subjected to static bending, viscous-elastic properties (storage modulus (E’), loss modulus (E”) and damping (tanδ)). Two types of ammonia-fuming treatment were applied on samples: first treatment T1-5% concentration of ammonia hydroxide for 30 days; second treatment T2-10% concentration for 60 days. The results highlighted the following aspects: the overall colour change in the case of the second treatment is 27% in comparison with 7% recorded for the control samples; the lightness and yellowness values are the most affected by the second ammonia treatment of black locust wood. The density increased with almost 20% due to ammonium fuming (10% concentration/60 days); in case of static bending, the elastic modulus (MOE) tends to decrease with increasing the exposure time to ammonium, but the modulus of rupture (MOR) increases with almost 17% and the breaking force increases too, with almost 41%. In the case of dynamic mechanical analysis, the temperature leads to different viscous-elastic behaviour of each type of samples.


Sign in / Sign up

Export Citation Format

Share Document