scholarly journals Pretreatment of Coconut Shell by Torrefaction for Pyrolysis Conversion

2021 ◽  
Vol 920 (1) ◽  
pp. 012002
Author(s):  
R Ahmad ◽  
S M Ahmahdi ◽  
A R Mohamed ◽  
C Z A Abidin ◽  
N N Kasim

Abstract This study describes the influence of torrefied coconut shell (CS) as solid fuel on pyrolysis product yield. The CS were torrefied and then pyrolysed in a fixed-bed reactor at different temperature and reaction time. The raw and torrefied CS were analysed for mass and energy yield, proximate analysis and ultimate analysis. The pyrolysis products yield were compared between raw CS and torrefied CS. The results showed that the properties of torrefied CS in terms of proximate and ultimate analysis were enhanced than raw CS. The calorific value for torrefied CS increased 17.17 MJ/kg to 22.25 MJ/kg. The optimum condition obtained for torrefaction pretreatment was at 275 °C and reaction time of 60 min. The highest bio-oil yield of 45% from pyrolysis process was at temperature and reaction time of 500 °C and 6 min, respectively. Thus, these results indicate torrefied CS was a suitable fuel feedstock to conduct in thermal conversion such as pyrolysis.

Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1970 ◽  
Author(s):  
Jayanto Kumar Sarkar ◽  
Qingyue Wang

In the present study, a series of laboratory experiments were conducted to examine the impact of pyrolysis temperature on the outcome yields of waste coconut shells in a fixed bed reactor under varying conditions of pyrolysis temperature, from 400 to 800 °C. The temperature was increased at a stable heating rate of about 10 °C/min, while keeping the sweeping gas (Ar) flow rate constant at about 100 mL/min. The bio-oil was described by Fourier transform infrared spectroscopy (FTIR) investigations and demonstrated to be an exceptionally oxygenated complex mixture. The resulting bio-chars were characterized by elemental analysis and scanning electron microscopy (SEM). The output of bio-char was diminished pointedly, from 33.6% to 28.6%, when the pyrolysis temperature ranged from 400 to 600 °C, respectively. In addition, the bio-chars were carbonized with the expansion of the pyrolysis temperature. Moreover, the remaining bio-char carbons were improved under a stable structure. Experimental results showed that the highest bio-oil yield was acquired at 600 °C, at about 48.7%. The production of gas increased from 15.4 to 18.3 wt.% as the temperature increased from 400 to 800 °C. Additionally, it was observed that temperature played a vital role on the product yield, as well as having a vital effect on the characteristics of waste coconut shell slow-pyrolysis.


2009 ◽  
Vol 6 (2) ◽  
pp. 33 ◽  
Author(s):  
E. Ganapathy Sundaram ◽  
E. Natarajan

 Fixed-bed slow pyrolysis experiments of coconut shell have been conducted to determine the effect of pyrolysis temperature, heating rate and particle size on the pyrolysis product yields. The effect of vapour residence time on the pyrolysis yield was also investigated by varying the reactor length. Pyrolysis experiments were performed at pyrolysis temperature between 400 and 600°C with a constant heating rate of 60°C/min and particle sizes of 1.18-1.80 mm. The optimum process conditions for maximizing the liquid yield from the coconut shell pyrolysis in a fixed bed reactor were also identified. The highest liquid yield was obtained at a pyrolysis temperature of 550 °C, particle size of 1.18-1.80 mm, with a heating rate of 60 °C/min in a 200 mm length reactor. The yield of obtained char, liquid and gas was 22-31 wt%, 38-44 wt% and 30-33 wt% respectively at different pyrolysis conditions. The results indicate that the effects of pyrolysis temperature and particle size on the pyrolysis yield are more significant than that of heating rate and residence time. The various characteristics of pyrolysis oil obtained under the optimum conditions for maximum liquid yield were identified on the basis of standard test methods. 


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Munique Gonçalves Guimarães ◽  
Rafael Benjamin Werneburg Evaristo ◽  
Augusto César de Mendonça Brasil ◽  
Grace Ferreira Ghesti

AbstractThe present work analyzed the energy generation potential of Buriti (Mauritia flexuosa L. f.) by thermochemical reactions. The experimental part of the study performed immediate analyses, elemental analyses, lignocellulosic analysis, thermogravimetric analysis, calorific values, and syn gas concentrations measurements of the gasification of Buriti in a fixed-bed reactor. Additionally, numerical simulations estimated the syn gas concentrations of the gasification reactions of Buriti. The immediate analysis showed that Buriti has the highest ash content (4.66%) and highest volatile matter content (85%) compared to other Brazilian biomass analyzed, but the higher heating value was only 18.28 MJ.kg−1. The elemental analysis revealed that the oxygen to carbon ratio was 0.51 while hydrogen to carbon ratio was 1.74, indicating a good thermal conversion efficiency. The Lignocellulosic analysis of Buriti resulted in a high content of holocellulose (69.64%), a lignin content of 28.21% and extractives content of 7.52%. The thermogravimetry of the Buriti indicated that the highest mass loss (51.92%) occurred in a temperature range between 150 °C and 370 °C. Lastly, the experimental gasification study in a fixed-bed updraft gasifier resulted in syn gas concentrations of 14.4% of CO, 11.5% of CO2 and 17.5% of H2 while the numerical simulation results confirmed an optimal equivalence ratio of 1.7 to maximize CO and H2 concentrations. Therefore, based on the results presented by the present work, the gasification process is adequate to transform Buriti wastes into energy resources. Graphic abstract


2013 ◽  
Vol 475-476 ◽  
pp. 1329-1333 ◽  
Author(s):  
Fen Li ◽  
Jin Wei ◽  
Ying Yang ◽  
Guang Hui Yang ◽  
Tao Lei

In this paper, an efficient metal oxide sorbents for the deep removal of H2S were synthesized using equal volume impregnation (EVIM) method. Modified coconut shell charcoal was selected as support to deposite the particles of copper oxide onto the surface. And copper nitrate were selected as the active component precursors in the preparation process of sorbents. Sorption experiments were carried out at room temperature in fixed-bed reactor. The grain size and crystal form of loading metals were characterized by X-ray diffraction (XRD). We investigated the effects of modifier onto coconut shell charcoal, load rate of metal oxide and calcination temperature on the desulfurization activity of the sorbent. Results show that the best modifier for coconut shell charcoal is KOH, which is significantly better than the other modifiers. And the optimum load rate is 20%(wt), the optimum calcination temperature is 300°C. Copper oxide onto the surface of modified coconut shell charcoal proved to be monoclinic nanoparticles with grain size of 18.7nm. Sulfidation test was carried out on the condition of i) the concentration of hydrogen sulfide gas (mixed with nitrogen ) is 1024.2ppm and ii) gas velocity is 20ml/min, iii) 0.1g sample in the middle of the fixed-bed reactor (length: 450 mm, interior diameter: 5 mm) to test. The sample show excellent sulfur removal efficiency and its breakthrough time is up to 287 min on this condition.


2017 ◽  
Vol 14 (1) ◽  
pp. 55-59 ◽  
Author(s):  
Ali Bahadir ◽  
Turgay Kar ◽  
Sedat Keles ◽  
Kamil Kaygusuz

Purpose The purpose of this paper is to investigate fast pyrolysis of maple fruit as an energy sources. This could serve as a solution to the energy sources problem. Design/methodology/approach Fast pyrolysis of maple fruit (samara) was achieved in a fixed bed reactor. The pyrolysis experiments have been conducted on the sample of maple seeds to particularly determine the effects of pyrolysis temperature, particle size and sweep gas flow rate on the pyrolysis product yields. Findings The oil of maple fruit from fast pyrolysis has good properties to be a potential candidate as a biofuel or as a source of chemicals. In addition to being environmentally desirable, it can reduce the energy cost, e.g. that Turkey imports a majority of its energy. Originality/value The use of maple fruit for fast pyrolysis and pyrolysis conditions impact on the yields of pyrolysis liquid can be considered as novel aspects of this paper.


2013 ◽  
Vol 779-780 ◽  
pp. 1394-1397
Author(s):  
Jin Wei Jia ◽  
Xin Qian Shu ◽  
He Long Hui ◽  
Xing Min Fu ◽  
Shu Cheng Liu ◽  
...  

To investigate the effects of gangue on pyrolysis of municipal solid waste (MSW), pyrolysis of MSW with gangue has been conducted by TG and fixed-bed reactor, respectively. The effect of gangue on pyrolysis product yields and compositions of gaseous products was investigated and the obtained results were compared with similar experiments without gangue. It was shown that gangue can improve the pyrolytic reaction of MSW, reduce the char yield, increase the liquid yield. And influences of gangue on yields of H2, CO, CH4 and CO2 were more apparent, the yields of H2, CO and CO2 with gangue were improved 12.5%, 11.8% and 175%, respectively, conversely, the yield of CH4 was reduced 15.4% compared with no gangue.


2014 ◽  
Vol 1010-1012 ◽  
pp. 947-951
Author(s):  
Jin Wei Jia ◽  
Ming Yuan Lu ◽  
Yue Fu Yuan ◽  
Lu Liu ◽  
Feng Sheng Yang ◽  
...  

An experimental study on co-pyrolysis of municipal solid waste and corn stalk was performed in a fixed-bed reactor under atmospheric pressure. The effect of different blending ratio on the pyrolysis product yields and compositions of the gaseous products was investigated. The results indicated that there exist synergetic effects in the co-pyrolysis of municipal solid waste and corn stalk. Under the different blending ratio conditions, the char and liquid yields were lower than the theoretical values calculated on pyrolysis of each individual municipal solid waste and corn stalk, and consequently the gas yields were higher. H2 and CH4 obtained co-pyrolysis at 800°C-900°C of 40% blending ratio conditions were higher than those of municipal solid waste and corn stalk alone.


2015 ◽  
Vol 737 ◽  
pp. 128-131 ◽  
Author(s):  
De Min He ◽  
Fan Nie ◽  
Jun Guan ◽  
Hao Quan Hu ◽  
Qiu Min Zhang

Tars generated by oil sand pyrolysis at different temperature in a fixed bed reactor were studied through TLC-FID and GC-MS. Compared to the raw oil sand extracts, pyrolysis could reduce the asphaltenes of oil which is benefit for storage, transport and further utilization. The temperature of pyrolysis affects not only product yield but also its composition. Analyzed together by TLC-FID and GC-MS, groups of tars at different temperature were identified. It was found higher temperature would strengthen the condensation reactions revealing increasing of cycloalkanes, indenes and PAHs increased with raising temperature. There was also a great amount of benzothiophenes which may generated by the decomposition of oil sand bitumen or aromatization of ring sulfides. That mainly contributed to the high content of resin in the tars.


2021 ◽  
Vol 323 ◽  
pp. 00003
Author(s):  
Artur Bieniek ◽  
Wojciech Jerzak ◽  
Aneta Magdziarz

Biomass pyrolysis is an advanced process which leads to obtaining products as chars, primary tars and gases. Depending on pyrolysis conditions and reactor construction, the pyrolysis could be divided into three categories: slow, intermediate and fast. This work concerns the experimental analysis of an intermediate pyrolysis of biomass residues in a fixed bed reactor. As raw materials, pine bark and wheat straw were selected. Experiments were carried out at three temperatures: 400, 500 and 600 °C under constant volume flow rate of inert gas equal to 100 ml/min. Biomass samples were kept for 150 seconds in the hot zone. The main goal was to compare yields, elemental composition, and calorific values of received products under studied process conditions. The ultimate analysis of chars and organic fractions of oils was performed. Obtained results from ultimate analysis allowed to determine higher heating values by a theoretical correlation. The products of pyrolysis obtained at 600 °C characterized by the most energetic parameters. The higher heating value for organic fraction of tars was 31.62 MJ/kg while for char was 29.47 MJ/kg.


2013 ◽  
Vol 795 ◽  
pp. 170-173 ◽  
Author(s):  
Razi Ahmad ◽  
Nasrul Hamidin ◽  
Umi Fazara Md Ali

A study of catalytic pyrolysis on rice straw was carried out in a fixed-bed reactor. The objectives were to determine the effect of dolomite catalyst on the distribution of product yield and bio-oil characterization. The non-catalytic and catalytic process of rice straw was performed at the optimum conditions. The chemical characterization studies of uncatalysed bio-oil derived from pyrolysis of rice straw reflect a considerable amount of carbonyl and oxygenated compound, resulting in higher oxygen content in elemental composition. In the presence of the dolomite catalyst, the yield of bio-oil was markedly reduced and so was the oxygen content of the bio-oil itself. The product yields and quality of the resultant bio-oil were significantly affected by the use of dolomite catalyst.


Sign in / Sign up

Export Citation Format

Share Document