scholarly journals Photoacoustic imaging of 3D-printed vascular networks

2022 ◽  
Author(s):  
Chenshuo Ma ◽  
Wanlu Li ◽  
Daiwei Li ◽  
Maomao Chen ◽  
Mian Wang ◽  
...  

Abstract Thrombosis in the circulation system can lead to major myocardial infarction and cardiovascular deaths. Understanding thrombosis formation is necessary for developing safe and effective treatments. In this work, using digital light processing (DLP)-based 3D printing, we fabricated sophisticated in vitro models of blood vessels with internal microchannels that can be used for thrombosis studies. In this regard, photoacoustic microscopy (PAM) offers a unique advantage for label-free visualization of the 3D-printed vessel models, with large penetration depth and functional sensitivity. We compared the imaging performances of two PAM implementations: optical-resolution PAM and acoustic-resolution PAM, and investigated 3D printed- vessel structures with different patterns of microchannels. Our results show that PAM can provide clear microchannel structures at depths up to 3.6 mm. We further quantified the blood oxygenation in the 3D-printed vascular models, showing that thrombi had lower oxygenation than the normal blood. We expect that PAM can find broad applications in 3D printing and bioprinting for in vitro studies of various vascular and other diseases.

2021 ◽  
Vol 10 (21) ◽  
pp. 4894
Author(s):  
Lukas Wegmüller ◽  
Florian Halbeisen ◽  
Neha Sharma ◽  
Sebastian Kühl ◽  
Florian M. Thieringer

This study evaluates the accuracy of drill guides fabricated in medical-grade, biocompatible materials for static, computer-aided implant surgery (sCAIS). The virtually planned drill guides of ten completed patient cases were printed (n = 40) using professional (Material Jetting (MJ)) and consumer-level three-dimensional (3D) printing technologies, namely, Stereolithography (SLA), Fused Filament Fabrication (FFF), and Digital Light Processing (DLP). After printing and post-processing, the drill guides were digitized using an optical scanner. Subsequently, the drill guide’s original (reference) data and the surface scans of the digitized 3D-printed drill guide were superimposed to evaluate their incongruencies. The accuracy of the 3D-printed drill guides was calculated by determining the root mean square (RMS) values. Additionally, cast models of the planned cases were used to check that the drill guides fitted manually. The RMS (mean ± SD) values for the accuracy of 3D-printed drill guides were—MJ (0.09 ± 0.01 mm), SLA (0.12 ± 0.02 mm), FFF (0.18 ± 0.04 mm), and DLP (0.25 ± 0.05 mm). Upon a subjective assessment, all drill guides could be mounted on the cast models without hindrance. The results revealed statistically significant differences (p < 0.01) in all except the MJ- and SLA-printed drill guides. Although the measured differences in accuracy were statistically significant, the deviations were negligible from a clinical point of view. Within the limits of this study, we conclude that consumer-level 3D printers can produce surgical guides with a similar accuracy to a high-end, professional 3D printer with reduced costs.


2021 ◽  
Vol 11 (6) ◽  
pp. 2563
Author(s):  
Ivan Grgić ◽  
Vjekoslav Wertheimer ◽  
Mirko Karakašić ◽  
Željko Ivandić

Recent soft tissue studies have reported issues that occur during experimentation, such as the tissue slipping and rupturing during tensile loads, the lack of standard testing procedure and equipment, the necessity for existing laboratory equipment adaptation, etc. To overcome such issues and fulfil the need for the determination of the biomechanical properties of the human gracilis and the superficial third of the quadriceps tendons, 3D printed clamps with metric thread profile-based geometry were developed. The clamps’ geometry consists of a truncated pyramid pattern, which prevents the tendons from slipping and rupturing. The use of the thread application in the design of the clamp could be used in standard clamping development procedures, unlike in previously custom-made clamps. Fused deposition modeling (FDM) was used as a 3D printing technique, together with polylactic acid (PLA), which was used as a material for clamp printing. The design was confirmed and the experiments were conducted by using porcine and human tendons. The findings justify the usage of 3D printing technology for parts manufacturing in the case of tissue testing and establish independence from the existing machine clamp system, since it was possible to print clamps for each prepared specimen and thus reduce the time for experiment setup.


2020 ◽  
Vol 6 (1) ◽  
pp. 57-69
Author(s):  
Amirhosein Fathi ◽  
Farzad Kermani ◽  
Aliasghar Behnamghader ◽  
Sara Banijamali ◽  
Masoud Mozafari ◽  
...  

AbstractOver the last years, three-dimensional (3D) printing has been successfully applied to produce suitable substitutes for treating bone defects. In this work, 3D printed composite scaffolds of polycaprolactone (PCL) and strontium (Sr)- and cobalt (Co)-doped multi-component melt-derived bioactive glasses (BGs) were prepared for bone tissue engineering strategies. For this purpose, 30% of as-prepared BG particles (size <38 μm) were incorporated into PCL, and then the obtained composite mix was introduced into a 3D printing machine to fabricate layer-by-layer porous structures with the size of 12 × 12 × 2 mm3.The scaffolds were fully characterized through a series of physico-chemical and biological assays. Adding the BGs to PCL led to an improvement in the compressive strength of the fabricated scaffolds and increased their hydrophilicity. Furthermore, the PCL/BG scaffolds showed apatite-forming ability (i.e., bioactivity behavior) after being immersed in simulated body fluid (SBF). The in vitro cellular examinations revealed the cytocompatibility of the scaffolds and confirmed them as suitable substrates for the adhesion and proliferation of MG-63 osteosarcoma cells. In conclusion, 3D printed composite scaffolds made of PCL and Sr- and Co-doped BGs might be potentially-beneficial bone replacements, and the achieved results motivate further research on these materials.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4544
Author(s):  
Osman Konuray ◽  
Arnau Sola ◽  
Jordi Bonada ◽  
Agnieszka Tercjak ◽  
Albert Fabregat-Sanjuan ◽  
...  

Versatile acrylate–epoxy hybrid formulations are becoming widespread in photo/thermal dual-processing scenarios, especially in 3D printing applications. Usually, parts are printed in a stereolithography or digital light processing (DLP) 3D printer, after which a thermal treatment would bestow the final material with superior mechanical properties. We report the successful formulation of such a hybrid system, consisting of a commercial 3D printing acrylate resin modified by an epoxy–anhydride mixture. In the final polymeric network, we observed segregation of an epoxy-rich phase as nano-domains, similar to what was observed in a previous work. However, in the current work, we show the effectiveness of a coupling agent added to the formulation to mitigate this segregation for when such phase separation is undesired. The hybrid materials showed significant improvement of Young’s modulus over the neat acrylate. Once the flexible, partially-cured material was printed with a minimal number of layers, it could be molded into a complex form and thermally cured. Temporary shapes were readily programmable on this final material, with easy shape recovery under mild temperatures. Inspired by repairable 3D printed materials described recently, we manufactured a large object by printing its two halves, and then joined them covalently at the thermal cure stage with an apparently seamless union.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1524
Author(s):  
Sadikalmahdi Abdella ◽  
Souha H. Youssef ◽  
Franklin Afinjuomo ◽  
Yunmei Song ◽  
Paris Fouladian ◽  
...  

Three-dimensional (3D) printing is among the rapidly evolving technologies with applications in many sectors. The pharmaceutical industry is no exception, and the approval of the first 3D-printed tablet (Spiratam®) marked a revolution in the field. Several studies reported the fabrication of different dosage forms using a range of 3D printing techniques. Thermosensitive drugs compose a considerable segment of available medications in the market requiring strict temperature control during processing to ensure their efficacy and safety. Heating involved in some of the 3D printing technologies raises concerns regarding the feasibility of the techniques for printing thermolabile drugs. Studies reported that semi-solid extrusion (SSE) is the commonly used printing technique to fabricate thermosensitive drugs. Digital light processing (DLP), binder jetting (BJ), and stereolithography (SLA) can also be used for the fabrication of thermosensitive drugs as they do not involve heating elements. Nonetheless, degradation of some drugs by light source used in the techniques was reported. Interestingly, fused deposition modelling (FDM) coupled with filling techniques offered protection against thermal degradation. Concepts such as selection of low melting point polymers, adjustment of printing parameters, and coupling of more than one printing technique were exploited in printing thermosensitive drugs. This systematic review presents challenges, 3DP procedures, and future directions of 3D printing of thermo-sensitive formulations.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1655 ◽  
Author(s):  
Giuseppe Melilli ◽  
Irene Carmagnola ◽  
Chiara Tonda-Turo ◽  
Fabrizio Pirri ◽  
Gianluca Ciardelli ◽  
...  

The development of new bio-based inks is a stringent request for the expansion of additive manufacturing towards the development of 3D-printed biocompatible hydrogels. Herein, methacrylated carboxymethyl cellulose (M-CMC) is investigated as a bio-based photocurable ink for digital light processing (DLP) 3D printing. CMC is chemically modified using methacrylic anhydride. Successful methacrylation is confirmed by 1H NMR and FTIR spectroscopy. Aqueous formulations based on M-CMC/lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) photoinitiator and M-CMC/Dulbecco’s Modified Eagle Medium (DMEM)/LAP show high photoreactivity upon UV irradiation as confirmed by photorheology and FTIR. The same formulations can be easily 3D-printed through a DLP apparatus to produce 3D shaped hydrogels with excellent swelling ability and mechanical properties. Envisaging the application of the hydrogels in the biomedical field, cytotoxicity is also evaluated. The light-induced printing of cellulose-based hydrogels represents a significant step forward in the production of new DLP inks suitable for biomedical applications.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5433
Author(s):  
Seung-Ho Shin ◽  
Jung-Hwa Lim ◽  
You-Jung Kang ◽  
Jee-Hwan Kim ◽  
June-Sung Shim ◽  
...  

The amount of photopolymer material consumed during the three-dimensional (3D) printing of a dental model varies with the volume and internal structure of the modeling data. This study analyzed how the internal structure and the presence of a cross-arch plate influence the accuracy of a 3D printed dental model. The model was designed with a U-shaped arch and the palate removed (Group U) or a cross-arch plate attached to the palate area (Group P), and the internal structure was divided into five types. The trueness and precision were analyzed for accuracy comparisons of the 3D printed models. Two-way ANOVA of the trueness revealed that the accuracy was 135.2 ± 26.3 µm (mean ± SD) in Group U and 85.6 ± 13.1 µm in Group P. Regarding the internal structure, the accuracy was 143.1 ± 46.8 µm in the 1.5 mm-thick shell group, which improved to 111.1 ± 31.9 µm and 106.7 ± 26.3 µm in the roughly filled and fully filled models, respectively. The precision was 70.3 ± 19.1 µm in Group U and 65.0 ± 8.8 µm in Group P. The results of this study suggest that a cross-arch plate is necessary for the accurate production of a model using 3D printing regardless of its internal structure. In Group U, the error during the printing process was higher for the hollowed models.


Diagnostics ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Masayuki Tanabe ◽  
Tai Chieh Wu ◽  
Makiko Kobayashi ◽  
Che Hua Yang

We have newly developed coaxial and confocal optical-resolution photoacoustic microscopy based on sol-gel composite materials. This transducer contains a concave-shaped piezoelectric layer with a focus depth of 5 mm and a hole with a diameter of 3 mm at the center to pass a laser beam into a phantom. Therefore, this system can directly detect an excited photoacoustic signal without prisms or acoustic lenses. We demonstrate the capability of the system through pulse-echo and photoacoustic imaging experiments. The center frequency of the fabricated transducer is approximately 7 MHz, and its relative bandwidth is 86%. An ex-vivo experiment is conducted, and photoacoustic signals are clearly obtained. As a result, 2- and 3-dimensional maximum amplitude projection images are reconstructed.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3305
Author(s):  
Pablo Kraemer Fernandez ◽  
Alexey Unkovskiy ◽  
Viola Benkendorff ◽  
Andrea Klink ◽  
Sebastian Spintzyk

(1) Background: To date, no information on the polishability of milled and 3D-printed complete denture bases has been provided, which is relevant in terms of plaque accumulation. (2) Methods: three groups (n = 30) were manufactured using the cold-polymerization polymethilmethacrilate, milling (SM) and 3D printing (AM). 10 specimens of each group were left untreated (reference). 10 more specimens were pre-polished (intermediate polishing) and 10 final specimens were highgloss polished. An additional 20 specimens were 3D printed and coated with the liquid resin (coated), 10 of which were additionally polished (coated + polished). For each group Ra and Rz values, gloss value and REM images were obtained. (3). The “highgloss-polished” specimens showed statistically lower Ra and Rz values in the SM, followed by AM and conventional groups. In the AM group statistically lower surfaces roughness was revealed for highgloss-polished, “coated + polished”, and “coated” specimens, respectively. (4) Conclusions: The milled specimens demonstrated superiors surface characteristics than 3D printed and conventionally produced after polishing. The polished specimens demonstrated superior surface characteristics over coated specimens. However, the surface roughness by both polished and coated specimens was within the clinically relevant threshold of 0.2 µm.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4632 ◽  
Author(s):  
Lin ◽  
Liang ◽  
Jin ◽  
Wang

Optical resolution photoacoustic microscopy (OR-PAM) provides high-resolution, label-free and non-invasive functional imaging for broad biomedical applications. Dual-polarized fiber laser sensors have high sensitivity, low noise, a miniature size, and excellent stability; thus, they have been used in acoustic detection in OR-PAM. Here, we review recent progress in fiber-laser-based ultrasound sensors for photoacoustic microscopy, especially the dual-polarized fiber laser sensor with high sensitivity. The principle, characterization and sensitivity optimization of this type of sensor are presented. In vivo experiments demonstrate its excellent performance in the detection of photoacoustic (PA) signals in OR-PAM. This review summarizes representative applications of fiber laser sensors in OR-PAM and discusses their further improvements.


Sign in / Sign up

Export Citation Format

Share Document