Increased SUMOylation of TCF21 improves its stability and function in human endometriotic stromal cells

Author(s):  
Jingwen Zhu ◽  
Peili Wu ◽  
Cheng Zeng ◽  
Qing Xue

Abstract Endometriosis is an estrogen-dependent disease. Our previous study demonstrated that elevated levels of transcription factor 21 (TCF21) in endometriotic tissues enhanced steroidogenic factor-1 (SF-1) and estrogen receptor β (ERβ) expression by forming a heterodimer with upstream stimulatory factor 2 (USF2), allowing these TCF21/USF2 complexes to bind to the promoters of SF-1 and ERβ. Furthermore, TCF21 contributed to the increased proliferation of endometriotic stromal cells (ESCs), suggesting that TCF21 may play a vital role in the pathogenesis of endometriosis. SUMOylation is a posttranslational modification that has emerged as a crucial molecular regulatory mechanism. However, the mechanism regulating TCF21 SUMOylation in endometriosis is incompletely characterized. Thus, this study aimed to explore the effect of TCF21 SUMOylation on its expression and regulation in ovarian endometriosis. We found that the levels of SUMOylated TCF21 were increased in endometriotic tissues and stromal cells compared with eutopic endometrial tissues and stromal cells and enhanced by estrogen. Treatment with the SUMOylation inhibitor ginkgolic acid (GA) and the results of a protein half-life assay demonstrated that SUMOylation can stabilize the TCF21 protein. A coimmunoprecipitation (Co-IP) assay showed that SUMOylation probably increased its interaction with USF2. Further analyses elucidated that SUMOylation of TCF21 significantly increased the binding activity of USF2 to the SF-1 and ERβ promoters. Moreover, the SUMOylation motifs in TCF21 affected the proliferation ability of ESCs. The results of this study suggest that SUMOylation plays a critical role in mediating the high expression of TCF21 in ESCs and may participate in the development of endometriosis.

2017 ◽  
Vol 312 (2) ◽  
pp. F259-F265 ◽  
Author(s):  
Sandeep K. Mallipattu ◽  
Chelsea C. Estrada ◽  
John C. He

Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors critical to mammalian embryonic development, regeneration, and human disease. There is emerging evidence that KLFs play a vital role in key physiological processes in the kidney, ranging from maintenance of glomerular filtration barrier to tubulointerstitial inflammation to progression of kidney fibrosis. Seventeen members of the KLF family have been identified, and several have been well characterized in the kidney. Although they may share some overlap in their downstream targets, their structure and function remain distinct. This review highlights our current knowledge of KLFs in the kidney, which includes their pattern of expression and their function in regulating key biological processes. We will also critically examine the currently available literature on KLFs in the kidney and offer some key areas in need of further investigation.


2016 ◽  
Vol 230 (2) ◽  
pp. 215-225 ◽  
Author(s):  
Lesley A Hill ◽  
Tamara S Bodnar ◽  
Joanne Weinberg ◽  
Geoffrey L Hammond

Plasma corticosteroid-binding globulin (CBG) plays a critical role in regulating glucocorticoid bioavailability and is an acute phase ‘negative’ protein during inflammation. In an adjuvant-induced arthritis model, plasma CBG levels decrease in rats that develop severe inflammation, and we have now determined when and how these reductions in CBG occur. After administering complete Freund’s adjuvant or saline intra-dermally at the tail base, blood samples were taken periodically for 16days. In adjuvant-treated rats, decreases in plasma CBG levels matched the severity of inflammation, and decreases were observed 4days before any clinical signs of inflammation. Decreases in CBG levels coincided with an ~5kDa reduction in its apparent size, consistent with proteolytic cleavage, and cleaved CBG lacked steroid-binding activity. At the termination of the experimental period, hepatic Cbg mRNA levels were decreased in rats with severe inflammation. While plasma TNF-α increased in all adjuvant-treated rats, increases in Il-4, IL-6, IL-10, IL-13 and IFN-γ were only observed in rats with cleaved CBG. Rats with cleaved CBG also exhibited increased spleen weights, and strong negative correlations were observed among CBG, IL-6 and spleen weights, respectively. However, there were no differences in hepatic Cbg mRNA levels in relation to the apparent proteolysis of CBG, suggesting that CBG cleavage occurs before changes in hepatic Cbg expression. Our results indicate that the levels and integrity of plasma CBG are biomarkers of the onset and severity of inflammation. Dynamic changes in the levels and function of CBG likely modulate the tissue availability of corticosterone during inflammation.


2016 ◽  
Vol 62 (1) ◽  
pp. 55-59
Author(s):  
Natalia Yur'evna Kalinchenko ◽  
Tatiana Aleksandrovna Anosova ◽  
Vitaliy Alekseevich Ioutsi ◽  
Anatoly Nikolaevich Tiulpakov

Steroidogenic factor 1 (SF1/AdBP4/FTZF1, NR5A1) is a nuclear receptor transcription factor that plays a critical role in different processes of sex development. Homozygous mutations in SF1 result in adrenal failure and complete testicular disgenesis in 46,XY individuals. According to recent studies heterozygous mutations in SF1 are associated with milder phenotype: they are found in children with 46,XY disorders of sex development (DSD) but with apparently normal adrenal structure and function. Here we present for the first time in Russian literature a case of SF1 deficiency. Molecular genetic analysis of NR5A1 gene revealed a novel heterozygous mutation c.951delC p.H317QfsX17. This clinical case demonstrates the importance of molecular genetic studies in DSD 46,XY, especially severe forms.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2722
Author(s):  
Elena Conte ◽  
Paola Imbrici ◽  
Paola Mantuano ◽  
Maria Coppola ◽  
Giulia Maria Camerino ◽  
...  

Intracellular Ca2+ ions represent a signaling mediator that plays a critical role in regulating different muscular cellular processes. Ca2+ homeostasis preservation is essential for maintaining skeletal muscle structure and function. Store-operated Ca2+ entry (SOCE), a Ca2+-entry process activated by depletion of intracellular stores contributing to the regulation of various function in many cell types, is pivotal to ensure a proper Ca2+ homeostasis in muscle fibers. It is coordinated by STIM1, the main Ca2+ sensor located in the sarcoplasmic reticulum, and ORAI1 protein, a Ca2+-permeable channel located on transverse tubules. It is commonly accepted that Ca2+ entry via SOCE has the crucial role in short- and long-term muscle function, regulating and adapting many cellular processes including muscle contractility, postnatal development, myofiber phenotype and plasticity. Lack or mutations of STIM1 and/or Orai1 and the consequent SOCE alteration have been associated with serious consequences for muscle function. Importantly, evidence suggests that SOCE alteration can trigger a change of intracellular Ca2+ signaling in skeletal muscle, participating in the pathogenesis of different progressive muscle diseases such as tubular aggregate myopathy, muscular dystrophy, cachexia, and sarcopenia. This review provides a brief overview of the molecular mechanisms underlying STIM1/Orai1-dependent SOCE in skeletal muscle, focusing on how SOCE alteration could contribute to skeletal muscle wasting disorders and on how SOCE components could represent pharmacological targets with high therapeutic potential.


2011 ◽  
Vol 21 (3) ◽  
pp. 112-117 ◽  
Author(s):  
Elizabeth Erickson-Levendoski ◽  
Mahalakshmi Sivasankar

The epithelium plays a critical role in the maintenance of laryngeal health. This is evident in that laryngeal disease may result when the integrity of the epithelium is compromised by insults such as laryngopharyngeal reflux. In this article, we will review the structure and function of the laryngeal epithelium and summarize the impact of laryngopharyngeal reflux on the epithelium. Research investigating the ramifications of reflux on the epithelium has improved our understanding of laryngeal disease associated with laryngopharyngeal reflux. It further highlights the need for continued research on the laryngeal epithelium in health and disease.


Reproduction ◽  
2018 ◽  
Author(s):  
Qianrong Qi ◽  
Yifan Yang ◽  
Kailin Wu ◽  
Qingzhen Xie

Recent studies revealed that TMEM16A is involved in several reproductive processes, including ovarian estrogen secretion and ovulation, sperm motility and acrosome reaction, fertilization, and myometrium contraction. However, little is known about the expression and function of TMEM16A in embryo implantation and decidualization. In this study, we focused on the expression and regulation of TMEM16A in mouse uterus during early pregnancy. We found that TMEM16A is up-regulated in uterine endometrium in response to embryo implantation and decidualization. Progesterone treatment could induce TMEM16A expression in endometrial stromal cells through progesterone receptor/c-Myc pathway, which is blocked by progesterone receptor antagonist or the inhibitor of c-Myc signaling pathway. Inhibition of TMEM16A by small molecule inhibitor (T16Ainh-A01) resulted in impaired embryo implantation and decidualization in mice. Treatment with either specific siRNA of Tmem16a or T16Ainh-A01 inhibited the decidualization and proliferation of mouse endometrial stromal cells. In conclusion, our results revealed that TMEM16A is involved in embryo implantation and decidualization in mice, compromised function of TMEM16A may lead to impaired embryo implantation and decidualization.


Author(s):  
Valentin Sencio ◽  
Marina Gomes Machado ◽  
François Trottein

AbstractBacteria that colonize the human gastrointestinal tract are essential for good health. The gut microbiota has a critical role in pulmonary immunity and host’s defense against viral respiratory infections. The gut microbiota’s composition and function can be profoundly affected in many disease settings, including acute infections, and these changes can aggravate the severity of the disease. Here, we discuss mechanisms by which the gut microbiota arms the lung to control viral respiratory infections. We summarize the impact of viral respiratory infections on the gut microbiota and discuss the potential mechanisms leading to alterations of gut microbiota’s composition and functions. We also discuss the effects of gut microbial imbalance on disease outcomes, including gastrointestinal disorders and secondary bacterial infections. Lastly, we discuss the potential role of the lung–gut axis in coronavirus disease 2019.


2021 ◽  
Vol 22 (8) ◽  
pp. 3955
Author(s):  
László Bálint ◽  
Zoltán Jakus

Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.


Sign in / Sign up

Export Citation Format

Share Document