scholarly journals Assessment of Whey Functional Ingredients in the Modulation of Fecal Bacteria from Donors with Chronic Gastrointestinal Disease In Vitro

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 736-736
Author(s):  
Shirley Arbizu ◽  
Giuliana Noratto ◽  
Susanne Talcott

Abstract Objectives To evaluate whey functional ingredients (WFI) as source of non-digestible nutrients for fecal bacteria from donors with intestinal bowel disease (IBD) in vitro. Methods The WFI whey protein isolate (WPI), glycomacropeptide (GMP) and a galacto-oligosaccharide rich whey protein concentrate (GOS-W), and peptone (control) were subjected to in vitro digestion (IVD) and freeze dried to be used in fecal culture medium. Fecal de-identified samples from 10 healthy and 9 mild-moderate IBD subjects were subjected to in vitro fecal fermentation for 24 h. Fecal bacteria and culture supernatants were analyzed using standard analytical procedures to quantify bacteria relative abundance, and metabolites in culture supernatants. Short chain fatty acids were quantified in fecal supernatants by HPLC analysis. HT29-MTX intestinal cells were treated with sterile-filtered fecal culture supernatants (2.5% v/v) to assess production of reactive oxygen species (ROS) using 10 μM of 2′7′ dichlorodihydrofluorescein diacetate (H2DCFDA) reagent. Results Among the WFI tested, WPI tended to modulate the relative abundance of bacteria that have been reported to decrease during IBD conditions such as R. hominis, R. intestinalis and R. torques. Metabolites in fecal culture supernatants showed that propionic acid concentrations in IBD controls were higher than healthy controls and WFI fermentations decreased those levels making them similar to the healthy controls. In contrast, the concentration of lactic acid tended to be higher in the GOS-W fecal culture supernatant, but only reached significance (P < 0.05) when compared to GMP-supplemented medium. No differences in acetic acid and butyric acid concentrations were found between IBD controls and WFI treatments. Results also showed that WPI, GOS-W and GMP fecal culture supernatants prevented ROS production in HT29-MTX cells when compared to their respective IBD-controls. Conclusions WPI favorably modulated the relative abundance of bacteria relevant in IBD while all WFI metabolites produced after in vitro fecal fermentation mitigated oxidative stress. These findings suggest the potential of WFI to moderate adverse conditions associated with IBD. Funding Sources Build Dairy Program.

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 229 ◽  
Author(s):  
Mariana A. Andrade ◽  
Cássia H. Barbosa ◽  
Victor G. L. Souza ◽  
Isabel M. Coelhoso ◽  
João Reboleira ◽  
...  

Algae and seaweeds are used in cookery since the beginnings of human civilization, particularly in several Asian cultures. Phenolic compounds are secondary metabolites produced by aquatic and terrestrial plants for their natural defense against external stimuli, which possess powerful antimicrobial and antioxidant properties that can be very important for the food industry. The main objective of this study was to develop a whey protein concentrate active coating, incorporated with a Fucus vesiculosus extract in order to delay the lipid oxidation of chicken breasts. Ten hydroethanolic extracts from F. vesiculosus were obtained and their antioxidant capacity was evaluated through two antioxidant activity assays: the DPPH radical scavenging activity and β-carotene bleaching assay. The total content in phenolics compounds was also determined by Folin-Ciocalteu method. The chosen extract was the one obtained from the freeze-dried F. vesiculosus using 75% (v/v) ethanol as extraction solvent. The extract was successfully incorporated into a whey protein film and successfully strengthened the thickness, tensile strength, and elastic modulus. The active film also was able to inhibit the chicken breasts lipid oxidation for 25 days of storage.


2012 ◽  
Vol 5 (1-2) ◽  
Author(s):  
Milka Stijepić ◽  
Dragica Đurđević-Milošević ◽  
Jovana Glušac

Due to a growing demand for functional fermented dairy foods with improved nutritional qualities, the food processing industry has prompted to cut down on ingredients such as fat, sugar and additives, thereby necessitating some important changes in sensory qualities that influence consumer acceptance of fermented dairy products. Addition of functional ingredients such as whey protein concentrate (WPC) and honey may improve overall quality of yoghurt. It is well known ability of WPC to support formation of whey protein aggregates which highly improve physical properties of yoghurt. Honey may be an ideal sweetener for yoghurt due to its sugar concentration, low pH and a variety of beneficial nutritional properties.The aim of the present study was to examine the effect of WPC (1%), as well as combination of WPC and honey (H: 2% and 4%) on the physical and chemical properties of low fat set-style yoghurt during 21 days of storage at 5°C. Yogurt was prepared from milk (1.5% fat), treated on 95ºC for 10 min and yoghurt culture VIVOLAC DriSet Yogurt 442: 10% Lactobacillus delbrueckii subsp. bulgaricus and 90% Streptococcus thermophilus (Vivolac Culture Corporation, Indiana, USA), applying standard manufacturing procedure. It was concluded that the addition of honey in combination with WPC improved quality of produced yoghurt. On the other side, as honey presents a higher nutrition value ingredient, the addition of different percent of honey in combination with WPC could present a novel formulation for functional fermented dairy food.


Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 582 ◽  
Author(s):  
Thanyaporn Kleekayai ◽  
Aurélien V. Le Gouic ◽  
Barbara Deracinois ◽  
Benoit Cudennec ◽  
Richard J. FitzGerald

Bovine whey protein concentrate (WPC) was hydrolysed under pH-stat (ST) and non pH-controlled (free-fall, FF) conditions using Debitrase (DBT) and FlavorPro Whey (FPW). The resultant whey protein hydrolysates (WPHs) were assessed for the impact of hydrolysis conditions on the physicochemical and the in vitro antioxidant and intracellular reactive oxygen species (ROS) generation in oxidatively stressed HepG2 cells. Enzyme and hydrolysis condition dependent differences in the physicochemical properties of the hydrolysates were observed, however, the extent of hydrolysis was similar under ST and FF conditions. Significantly higher (p < 0.05) in vitro and cellular antioxidant activities were observed for the DBT compared to the FPW–WPHs. The WPHs generated under ST conditions displayed significantly higher (p < 0.05) oxygen radical absorbance capacity (ORAC) and Trolox equivalent antioxidant capacity (TEAC) values compared to the FF-WPHs. The impact of hydrolysis conditions was more pronounced in the in vitro compared to the cellular antioxidant assay. WPH peptide profiles (LC-MS/MS) were also enzyme and hydrolysis conditions dependent as illustrated in the case of β-lactoglobulin. Therefore, variation in the profiles of the peptides released may explain the observed differences in the antioxidant activity. Targeted generation of antioxidant hydrolysates needs to consider the hydrolysis conditions and the antioxidant assessment method employed.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Lihua Duan ◽  
Jiao Luo ◽  
Qiang Fu ◽  
Ke Shang ◽  
Yingying Wei ◽  
...  

Gout is a common metabolic disease in humans, and it is due to persistently elevated levels of uric acid in the blood. At high levels, uric acid crystallizes and the crystals deposit in joints and surrounding tissues, resulting in an attack of gout. Interestingly, the gout attack can spontaneously resolve within a few days. However, the self-limited mechanism of gout remains elusive. It has been demonstrated that CD14 plays an important role in self-remission of gout. In this study, we found that the proportion of CD14-positive PBMCs was decreased in gout patients when compared with healthy controls and the serum sCD14 level was also considerably decreased in gout patients in comparison to healthy controls. In addition, sCD14 levels were positively correlated with CRP levels. Furthermore, the effect of MSU on the levels of CD14 in healthy volunteer’s PBMC was explored in in vitro experiment. The results showed that CD14 expression on macrophage and sCD14 levels in the culture supernatants were significantly decreased after MSU treatment. However, there was no significance in the levels of membrane CD14 and sCD14 in healthy volunteer’s PBMC stimulated by LPS. Taken together, these results suggest that CD14 might play an important role in self-remission of gout.


2019 ◽  
Vol 39 (suppl 2) ◽  
pp. 475-481 ◽  
Author(s):  
Farideh VAHIDMOGHADAM ◽  
Rezvan POURAHMAD ◽  
Ali MORTAZAVI ◽  
Daryoush DAVOODI ◽  
Reza AZIZINEZHAD

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 282
Author(s):  
Katarzyna Klimek ◽  
Marta Tarczynska ◽  
Wieslaw Truszkiewicz ◽  
Krzysztof Gaweda ◽  
Timothy E. L. Douglas ◽  
...  

The purpose of this pilot study was to establish whether a novel freeze-dried curdlan/whey protein isolate-based biomaterial may be taken into consideration as a potential scaffold for matrix-associated autologous chondrocyte transplantation. For this reason, this biomaterial was initially characterized by the visualization of its micro- and macrostructures as well as evaluation of its mechanical stability, and its ability to undergo enzymatic degradation in vitro. Subsequently, the cytocompatibility of the biomaterial towards human chondrocytes (isolated from an orthopaedic patient) was assessed. It was demonstrated that the novel freeze-dried curdlan/whey protein isolate-based biomaterial possessed a porous structure and a Young’s modulus close to those of the superficial and middle zones of cartilage. It also exhibited controllable degradability in collagenase II solution over nine weeks. Most importantly, this biomaterial supported the viability and proliferation of human chondrocytes, which maintained their characteristic phenotype. Moreover, quantitative reverse transcription PCR analysis and confocal microscope observations revealed that the biomaterial may protect chondrocytes from dedifferentiation towards fibroblast-like cells during 12-day culture. Thus, in conclusion, this pilot study demonstrated that novel freeze-dried curdlan/whey protein isolate-based biomaterial may be considered as a potential scaffold for matrix-associated autologous chondrocyte transplantation.


2012 ◽  
Vol 32 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Fabiane La Flor Ziegler ◽  
Georgia Alvares Castro ◽  
Yara Maria Franco Moreno ◽  
Vanessa Oya ◽  
Maria Marluce dos Santos Vilela ◽  
...  

Whey protein samples (S-1 to S-5) were tested in vivo and in vitro for nutritional properties and selected bioactivities. Weanling male Wistar rats fed modified AIN-93G (12 g protein.100 g-1) diets for 21 days were used the in vivo studies. The nutritional parameters did not differ among the protein diets tested. Erythrocyte glutathione content was considered high and was higher for S-3, but liver glutathione was the same for all dietary groups. For S-3, cytokine secretion (IL-10 and TNF-α) by human peripheral blood mononuclear cells (in RPMI-1640 medium) was higher in the absence of antigen than in the presence of BCG antigen. Interleukin-4 secretion was repressed in all treatments. The IC50, whey protein concentration required to inhibit 50% of the melanoma cell proliferation, was 2.68 mg.mL-1 of culture medium for the S-3 sample and 3.66 mg.mL-1 for the S-2 sample. Based on these results, it was concluded that S-3 (whey protein concentrate enriched with TGF-β and lactoferrin) produced better nutritional and immunological responses than the other products tested.


1988 ◽  
Vol 2 (2) ◽  
pp. 368-371
Author(s):  
Y. Marumoto ◽  
I. Sato ◽  
K. Ikeda

In this study, the effects of culture supernatants on various activities of the monocyte, as a bone-resorbing cell, were compared between peripheral blood leukocyte (PBL) cultures from patients with periodontal disease and those from subjects with a clinically healthy periodontium. We have reported that normal human monocytes in vitro induce the release of calcium from synthetic hydroxyapatite particles and that the activity is enhanced by supernatants from cultures of stimulated or non-stimulated peripheral blood leukocytes. Monocytes from both patients and healthy subjects induced the release of calcium from hydroxyapatite particles (HA) to an equal degree. This activity of monocytes from healthy subjects showed a statistically significant increase by addition of supernatants from stimulated or unstimulated cultures of peripheral blood leukocytes from periodontitis patients. This increase was greater than that seen with supernatants from cells of healthy controls. The Nitro Blue Tetrazolium reduction activity and [3H]-thymidine incorporation of monocytes were also increased by addition of the supernatants from leukocyte cultures from either patients or healthy controls, but no significant difference was noted in the increase. These results suggest that the HA-resorbing activity of monocytes was enhanced by factors from cultured leukocytes. Furthermore, these studies showed that production of these factors by peripheral mononuclear cells from patients with periodontal disease was greater than that seen with cells from normal subjects.


2019 ◽  
Vol 7 (3) ◽  
pp. 761-771 ◽  
Author(s):  
Hiba Ahmed Mohammed Ahmed ◽  
Syed Amir Ashraf ◽  
Amir Mahgoub Awadelkareem ◽  
Jahoor Alam ◽  
Abdelmoniem Ibrahim Mustafa

The objective of this study was to evaluate the nutritional, non-nutritional as well as physico-chemical characteristics of biscuits developed from the supplementation of wheat flour with different levels of whey protein concentrate (WPC). The biscuits were prepared by using composite blends of wheat flour (WF) and WPC in different combination such as 100:0 (WF), 95:5 (WWP 5%), 90:10 (WWP 10%) and 85:15 (WWP 15). Proximate analysis of control as well as treated sample showed significant rise in crude protein content, with increase in WPC supplementation. Moreover, Non-nutritional factor such as tannin content and polyphenols was found to be highest in WF sample followed by WWP (5%), WWP (10%) and WWP (15%). In addition to that, in-vitro protein digestibility (IVPD) was found to be highest in WPC and when IVPD was compared with the crude protein, a significant difference was observed. Additionally, with the increase in WPC ratio the concentration of lysine, aspartic acid and glutamic acid was improved. Moreover mineral analysis revealed that, WF had highest amount of iron 0.66 mg/100g followed by WWP (5%), WWP (10%), WWP (15%) and WPC. Moreover, spread ratio of cookies found to be significant with the increase in the levels of WPC. Sensory evaluation of the samples revealed that, WWP (15%) had highest acceptance rating followed by WWP (10%). Based upon our investigation, we found that WPC could be a good source of supplementation for the development of protein enriched biscuits to combat the problem of malnutrition.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3391
Author(s):  
Marit Navis ◽  
Lauriane Schwebel ◽  
Susanne Soendergaard Kappel ◽  
Vanesa Muncan ◽  
Per Torp Sangild ◽  
...  

Human milk is the optimal diet for infant development, but infant milk formula (IMF) must be available as an alternative. To develop high-quality IMF, bovine milk processing is required to ensure microbial safety and to obtain a protein composition that mimics human milk. However, processing can impact the quality of milk proteins, which can influence gastro-intestinal (GI) tolerance by changing digestion, transit time and/or absorption. The aim of this study was to evaluate the impact of structural changes of proteins due to thermal processing on gastro-intestinal tolerance in the immature GI tract. Preterm and near-term piglets received enteral nutrition based on whey protein concentrate (WPC) either mildly pasteurized (MP-WPC) or extensively heated (EH-WPC). Clinical symptoms, transit time and gastric residuals were evaluated. In addition, protein coagulation and protein composition of coagulates formed during in vitro digestion were analyzed in more detail. Characterization of MP-WPC and EH-WPC revealed that mild pasteurization maintained protein nativity and reduced aggregation of β-lactoglobulin and α-lactalbumin, relative to EH-WPC. Mild pasteurization reduced the formation of coagulates during digestion, resulting in reduced gastric residual volume and increased intestinal tract content. In addition, preterm piglets receiving MP-WPC showed reduced mucosal bacterial adherence in the proximal small intestine. Finally, in vitro digestion studies revealed less protein coagulation and lower levels of β-lactoglobulin and α-lactalbumin in the coagulates of MP-WPC compared with EH-WPC. In conclusion, minimal heat treatment of WPC compared with extensive heating promoted GI tolerance in immature piglets, implying that minimal heated WPC could improve the GI tolerance of milk formulas in infants.


Sign in / Sign up

Export Citation Format

Share Document