scholarly journals Effects of a High Fat Meal Challenge with Different Doses of Spice Blend on Postprandial Fatty Acid Suppression (P08-094-19)

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Jessica Anto ◽  
Rachel Walker ◽  
Ester Oh ◽  
Connie Rogers ◽  
Kristina Petersen ◽  
...  

Abstract Objectives High fat meals can increase inflammation and plasma triglycerides. Poor suppression of postprandial adipocyte lipolysis results in higher levels of non-esterified fatty acids (NEFA) in insulin resistant subjects. This impaired suppression of NEFA may exacerbate hypertriglyceridemia following a high fat meal by increasing available fatty acids. We have shown myristic acid (MA) and stearic acid (SA) are less suppressed than other fatty acids 1 hour following a glucose challenge, and this pattern may indicate optimal adipocyte insulin sensitivity. It is unknown if the same pattern occurs in other contexts, such as high fat meal. Methods Plasma samples were collected from 12 obese male subjects at baseline and 4 time points following a high fat meal (1076 kcal, 39% kcal from saturated fat) on three visits. Meals contained either 0, 2, or 6 grams of a spice blend. Plasma was analyzed by GC-MS to measure multiple fatty acids, including MA, SA, palmitic acid (PA), oleic acid (OA), and linoleic acid (LA). Results At 1 hour following the high fat meal, MA and SA were less suppressed than OA, PA, and LA (P < 0.0001). Total NEFA concentrations were most suppressed (61%; CI: 46%, 76%) at 2 hours following the meal and remained suppressed until 4 hours. PA (59%, P < 0.0001), SA (43%, P < 0.001), OA (68%, P < 0.0001), and LA (71%, P < 0.0001) also achieved maximal suppression at 2 hours and remained suppressed. MA was suppressed (34%, P = 0.0002) at 1 hour, then returned to baseline. Compared to baseline, all saturated fatty acids increased as % of total NEFA at 2 hours (MA: 0 hr, 1.8%, 2 hr, 3.7%, P < 0.0001; PA: 0 hr, 24%, 2 hr, 26%, P = 0.009; SA: 0 hr, 8%, 2 hr, 12%, P < 0.0001), while the unsaturated fatty acids decreased (OA: 0 hr, 33%, 2 hr, 25%, P < 0.0001; LA: 0 hr, 24%, 2 hr, 19%, P < 0.0001). There was no significant effect of spice. Conclusions NEFA was most suppressed at 2 hours following a high fat meal challenge, but MA and SA were suppressed less than all other fatty acids. Saturated fatty acids increased as a % of total NEFA following the meal challenge, while unsaturated fatty acids decreased. These data support our previous findings that MA and SA are less suppressed by insulin than other fatty acids. Funding Sources McCormick Science Institute; Penn State Department of Nutritional Sciences; National Center for Advancing Translational Sciences, NIH, (UL1 TR002014).

2003 ◽  
Vol 90 (2) ◽  
pp. 329-336 ◽  
Author(s):  
Anja Schou Lindman ◽  
Hanne Müller ◽  
Ingebjørg Seljeflot ◽  
Hans Prydz ◽  
Marit Veierød ◽  
...  

Dietary fat influences plasma levels of coagulation factor VII (FVII) and serum phospholipids (PL). It is, however, unknown if the fat-mediated changes in FVII are linked to PL. The present study aimed to investigate the effects of dietary fat on fasting and postprandial levels of activated FVII (FVIIa), FVII coagulant activity (FVIIc), FVII protein (FVIIag) and choline-containing PL (PC). In a randomized single-blinded crossover-designed study a high-fat diet (HSAFA), a low-fat diet (LSAFA), both rich in saturated fatty acids, and a high-fat diet rich in unsaturated fatty acids (HUFA) were consumed for 3 weeks. Twenty-five healthy females, in which postprandial responses were studied in a subset of twelve, were included. The HSAFA diet resulted in higher levels of fasting FVIIa and PC compared with the LSAFA and the HUFA diets (all comparisonsP≤0·01). The fasting PC levels after the LSAFA diet were also higher than after the HUFA diet (P<0·001). Postprandial levels of FVIIa and PC were highest on the HSAFA diet and different from LSAFA and HUFA (all comparisonsP≤0·05). Postprandial FVIIa was higher on the HUFA compared with the LSAFA diet (P<0·03), whereas the HUFA diet resulted in lower postprandial levels of PC than the LSAFA diet (P<0·001). Significant correlations between fasting levels of PC and FVIIc were found on all diets, whereas FVIIag was correlated to PC on the HSAFA and HUFA diet. The present results indicate that dietary fat, both quality and quantity, influences fasting and postprandial levels of FVIIa and PC. Although significant associations between fasting FVII and PC levels were found, our results do not support the assumption that postprandial FVII activation is linked to serum PC.


Foods ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 44 ◽  
Author(s):  
Julliane Carvalho Barros ◽  
Paulo E. S. Munekata ◽  
Francisco Allan Leandro de Carvalho ◽  
Mirian Pateiro ◽  
Francisco J. Barba ◽  
...  

The present study evaluated the replacement of beef fat in beef burgers using a tiger nut (Cyperus esculentus L.) oil emulsion, in order to reduce total fat and saturated fatty acids in the studied samples. Three formulations were processed: Control—100% beef fat; tiger nut 50% (TN50)—50% of beef fat replaced using tiger nut oil emulsion and tiger nut 100% (TN100)—100% of beef fat replaced by tiger nut oil emulsion. The physicochemical parameters were affected after fat replacement. Moreover, the protein and fat contents decreased in those sample with tiger nut oil emulsion, thus the formulation TN100 can be considered as “reduced fat content”. Regarding color, an increased L* and b* value parameters was observed after TN100 while the values of a* remained similar to the Control samples. The hardness, cohesiveness, gumminess and chewiness were similar in all formulations. The addition of tiger nut oil emulsion as a substitute for beef fat reduced saturated fat and increased the mono- and polyunsaturated fatty acids. Oleic acid was found to be in highest proportions in burgers. The TN100 samples were considered as acceptable by consumers. Therefore, total replacement of beef fat using tiger nut oil emulsions in beef burger resulted in a well-accepted and healthier meat product with reduced total and saturated fat contents, as well as increased unsaturated fatty acids.


2005 ◽  
Vol 64 (3) ◽  
pp. 379-386 ◽  
Author(s):  
J. E. Upritchard ◽  
M. J. Zeelenberg ◽  
H. Huizinga ◽  
P. M. Verschuren ◽  
E. A. Trautwein

Saturated andtrans-fatty acids raise total cholesterol and LDL-cholesterol and are known to increase the risk of CHD, while dietary unsaturated fatty acids play important roles in maintaining cardiovascular health. Replacing saturated fats with unsaturated fats in the diet often involves many complex dietary changes. Modifying the composition of foods high in saturated fat, particularly those foods that are consumed daily, can help individuals to meet the nutritional targets for reducing the risk of CHD. In the 1960s the Dutch medical community approached Unilever about the technical feasibility of producing margarine with a high-PUFA and low-saturated fatty acid composition. Margarine is an emulsion of water in liquid oil that is stabilised by a network of fat crystals. In-depth expertise of fat crystallisation processes allowed Unilever scientists to use a minimum of solid fat (saturated fatty acids) to structure a maximum level of PUFA-rich liquid oil, thus developing the first blood-cholesterol-lowering product, Becel. Over the years the composition of this spread has been modified to reflect new scientific findings and recommendations. The present paper will briefly review the developments in fat technology that have made these improvements possible. Unilever produces spreads that are low in total fat and saturated fat, virtually free oftrans-fatty acids and with levels ofn-3 andn-6 PUFA that are in line with the latest dietary recommendations for the prevention of CHD. Individuals with the metabolic syndrome have a 2–4-fold increased risk of developing CHD; therefore, these spreads could make a contribution to CHD prevention in this group. In addition, for individuals with the metabolic syndrome the spreads could be further modified to address their unique dyslipidaemia, i.e. elevated blood triacylglycerols and low HDL-cholesterol. Research conducted in the LIPGENE study and other dietary intervention studies will deliver the scientific evidence to justify further modifications in the composition of spreads that are healthy for the heart disease risk factors associated with the metabolic syndrome.


Nutrients ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1326 ◽  
Author(s):  
Janin Henkel ◽  
Eugenia Alfine ◽  
Juliana Saín ◽  
Korinna Jöhrens ◽  
Daniela Weber ◽  
...  

While the impact of dietary cholesterol on the progression of atherosclerosis has probably been overestimated, increasing evidence suggests that dietary cholesterol might favor the transition from blunt steatosis to non-alcoholic steatohepatitis (NASH), especially in combination with high fat diets. It is poorly understood how cholesterol alone or in combination with other dietary lipid components contributes to the development of lipotoxicity. The current study demonstrated that liver damage caused by dietary cholesterol in mice was strongly enhanced by a high fat diet containing soybean oil-derived ω6-poly-unsaturated fatty acids (ω6-PUFA), but not by a lard-based high fat diet containing mainly saturated fatty acids. In contrast to the lard-based diet the soybean oil-based diet augmented cholesterol accumulation in hepatocytes, presumably by impairing cholesterol-eliminating pathways. The soybean oil-based diet enhanced cholesterol-induced mitochondrial damage and amplified the ensuing oxidative stress, probably by peroxidation of poly-unsaturated fatty acids. This resulted in hepatocyte death, recruitment of inflammatory cells, and fibrosis, and caused a transition from steatosis to NASH, doubling the NASH activity score. Thus, the recommendation to reduce cholesterol intake, in particular in diets rich in ω6-PUFA, although not necessary to reduce the risk of atherosclerosis, might be sensible for patients suffering from non-alcoholic fatty liver disease.


2019 ◽  
Vol 149 (11) ◽  
pp. 1930-1941 ◽  
Author(s):  
Christina Diekmann ◽  
Hanna Huber ◽  
Manuela Preuß ◽  
Peter Preuß ◽  
Hans-Georg Predel ◽  
...  

ABSTRACT Background Research suggests that postprandial events, as risk factors for cardiovascular diseases (CVDs), are influenced by meal composition and exercise. Objectives We investigated the effect of walking versus rest on postprandial metabolic, inflammatory, and oxidative events following the consumption of test meals reflecting 2 different dietary patterns in older adults with an increased CVD risk. Methods A randomized crossover trial was conducted in 26 men and women (aged 70 ± 5 y; BMI 30.3 ± 2.3 kg/m2). Each adult participated in 4 treatments combining 1 of 2 iso-energetic (4300 kJ) meals [Western diet high-fat meal (WD): total fat, 59.4 g; saturated fatty acids, 32.0 g, dietary fiber, 4.2 g; or Mediterranean-type diet meal (MD): total fat, 40.1 g; saturated fatty acids, 5.1 g; dietary fiber, 14.5 g] with 30 min walking (4.6 ± 0.1 km/h) or rest. Primary (serum triglycerides) and secondary [serum nonesterified fatty acids (NEFAs); parameters of glucose metabolism, inflammation, endothelial activation, oxidation; blood pressure/heart rate] outcomes were measured at fasting and 1.5, 3.0, and 4.5 h postprandially. Data were analyzed by linear mixed models. Results Triglycerides were higher after the WD than after the MD [AUC in mmol/L × min: Western diet high-fat meal plus postprandial walking (WD-W), 218 ± 15.2; Western diet high-fat meal plus postprandial resting (WD-R), 207 ± 12.6; Mediterranean-type diet meal plus postprandial walking (MD-W), 139 ± 9.83; Mediterranean-type diet meal plus postprandial resting (MD-R), 149 ± 8.15; P  < 0.001]. No meal or activity effect was observed for NEFAs based on AUC data (WD-W, −43.5 ± 7.08; WD-R, −49.2 ± 6.94; MD-W, −48.0 ± 11.6; MD-R, −67.6 ± 7.58). Plasma glucose was higher after the MD than after the WD (WD-W, 222 ± 34.9; WD-R, 177 ± 32.8; MD-W, 314 ± 44.4; MD-R, 275 ± 57.8; P  < 0.001), as was serum insulin (AUC in nmol/L × min: WD-W, 82.0 ± 10.3; WD-R, 88.6 ± 12.8; MD-W, 129 ± 14.7; MD-R, 138 ± 20.5; P < 0.001). Plasma IL-6 was higher after walking than after resting (AUC in pg/mL × min: WD-W, 72.0 ± 34.0; WD-R, 14.3 ± 38.8; MD-W, 70.8 ± 39.4; MD-R, 5.60 ± 26.0; P < 0.05). Plasma vitamin C was higher after the MD than after the WD (P < 0.001) and after walking than after resting (P < 0.05; AUC in mg/L × min: WD-W, −305 ± 59.6; WD-R, −396 ± 84.0; MD-W, 113 ± 56.4; MD-R, −44.5 ± 48.1). We observed no meal or activity effects on parameters of oxidation and endothelial adhesion molecules. Our data revealed no significant meal × activity effects on all outcomes. Conclusions In older adults with an increased CVD risk, the MD was associated with superior effects on several postprandial parameters (e.g., triglycerides), in comparison to the WD. Data revealed no relevant differences regarding the effects of postmeal walking and resting. None of the 4 treatments can be rated as superior regarding their acute effects on the shown postprandial metabolic, oxidative, and inflammatory parameters. The trial was registered at German Clinical Trials Register (DRKS; http://www.germanctr.de and http://www.drks.de) under identifier DRKS00012409.


Author(s):  
Michelle A. Briggs ◽  
Kristina S. Petersen ◽  
Penny M. Kris-Etherton

Dietary recommendations to decrease the risk of cardiovascular disease (CVD) have focused on reducing intake of saturated fatty acids (SFA) for more than 50 years. While the 2015-2020 Dietary Guidelines for Americans advise substituting both monounsaturated and polyunsaturated fatty acids for SFA, evidence supports other nutrient substitutions that will also reduce CVD risk. For example, replacing SFA with whole grains, but not refined carbohydrates, reduces CVD risk. Replacing SFA with protein, especially plant protein may also reduce CVD risk. While dairy fat (milk, cheese) is associated with a slightly lower CVD risk compared to meat, dairy fat results in a significantly greater CVD risk relative to unsaturated fatty acids. As research continues, we will refine our understanding of dietary patterns associated with lower CVD risk.


2020 ◽  
Vol 28 (s1) ◽  
pp. 247-254
Author(s):  
K. Kidega ◽  
E.K. Ndyomugyenyi ◽  
I. Okello-Uma

Pork meat consumption and its products are constrained by high fat content, particularly high composition of saturated fatty acids. The objective of this study was to investigate the effect of indigenous micro-organism (IMO) treatment of deep litter floor, on nutrient content in pork of pigs raised on IMO treated and untreated deep litter floor. Twenty four three-months old pigs (Large White x Landrace) were raised on deep litter floor; one floor type treated with IMO solution and the control not treated. Significant (P<0.05) differences were observed in the amount of saturated, mono-unsaturated, poly-unsaturated, cis, trans and omega-6, 7 and 9 fatty acids in pork of pigs raised on IMO treated and untreated deep litter floor; with more unsaturated fatty acids in pork of pigs raised on deep litter floor without IMO treatment (63%) than pigs kept on deep litter floor with IMO (37%). Therefore, deep litter floor treatment with IMO solution does not affect nutrient contents in pork, but enhances the composition of unsaturated fatty acids. Further research should be conducted on the mechanisms by which deep litter floor whether treated or untreated with IMO solution modifies fatty acids composition in pork.


Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1814 ◽  
Author(s):  
Aline Santamarina ◽  
Giovana Jamar ◽  
Laís Mennitti ◽  
Veridiana de Rosso ◽  
Helena Cesar ◽  
...  

Obesity is associated with modern diets that are rich in saturated fatty acids. These dietary patterns are linked to low-grade proinflammatory mechanisms, such as the toll-like receptor 4/nuclear factor kappa-B (NF-κB) pathway rapidly activated through high-fat diets. Juçara is a berry rich in anthocyanins and unsaturated fatty acids, which prevents obesity and associated comorbidities. We evaluated the effect of different doses of freeze-dried juçara pulp on NF-κB pathway after the consumption of short-term high-fat diet. Male Wistar rats with ad libitum access to food and water were divided into four groups: Control diet (C), high-fat diet (HFC), high-fat diet with 0.25% juçara (HFJ 0.25%), and high-fat diet with 0.5% juçara (HFJ 0.5%). Energy intake and body weight gain were increased in HFC and HFJ 0.5% groups compared to C group. The hypothalamus weight reduced in the HFC group compared to C and HFJ 0.25% groups. Cytokines, MYD88, TRAF6, and pNF-κBp50 levels in the hypothalamus, serum triacylglycerol, LDL-cholesterol (LDL-C), and free fatty acid levels were improved in the HFJ 0.25% group. In summary, the HFJ 0.25% group had better protective effects than those in the HFJ 0.5%. Therefore, 0.25% juçara can be used to protect against central inflammation through the high-fat diet-induced NF-κB pathway.


2020 ◽  
Vol 20 (2) ◽  
pp. 38-40
Author(s):  
A. Levitsky ◽  
A. Lapinska ◽  
I. Selivanskaya

The article analyzes the role of essential polyunsaturated fatty acids (PUFA), especially omega-3 series in humans and animals. The biosynthesis of essential PUFA in humans and animals is very limited, so they must be consumed with food (feed). Тhe ratio of omega-3 and omega-6 PUFA is very important. Biomembranes of animal cells contain about 30% PUFA with a ratio of ω-6/ ω-3 1-2. As this ratio increases, the physicochemical properties of biomembranes and the functional activity of their receptors change. The regulatory function of essential PUFA is that in the body under the action of oxygenase enzymes (cyclooxygenase, lipoxygenase) are formed extremely active hormone-like substances (eicosanoids and docosanoids), which affect a number of physiological processes: inflammation, immunity, metabolism. Moreover, ω-6 PUFA form eicosanoids, which have pro-inflammatory, immunosuppressive properties, and ω-3 PUFAs form eicosanoids and docosanoids, which have anti-inflammatory and immunostimulatory properties. Deficiency of essential PUFA, and especially ω-3 PUFA, leads to impaired development of the body and its state of health, which are manifestations of avitaminosis F. Prevention and treatment of avitaminosis F is carried out with drugs that contain PUFA. To create new, more effective vitamin F preparations, it is necessary to reproduce the model of vitamin F deficiency. An experimental model of vitamin F deficiency in white rats kept on a fat –free diet with the addition of coconut oil, which is almost completely free of unsaturated fatty acids, and saturated fatty acids make up almost 99 % of all fatty acids was developed. The total content of ω-6 PUFA (sum of linoleic and arachidonic acids), the content of ω-3 PUFA (α-linolenic, eicosapentaenoic and docosahexaenoic acids) in neutral lipids (triglycerides and cholesterol esters) defined. Тhe content of ω-6 PUFA under the influence of coconut oil decreased by 3.3 times, and the content of ω-3 PUFA - by 7.5 times. Тhe influence of coconut oil, the content of ω-6 PUFA decreased by 2.1 times, and the content of ω-3 PUFA - by 2.8 times. The most strongly reduces the content of ω-3 PUFA, namely eicosapentaenoic, coconut oil, starting from 5 %. Consumption of FFD with a content of 15 % coconut oil reduces the content of eicosapentaenoic acid to zero, ie we have an absolute deficiency of one of the most important essential PUFAs, which determined the presence of vitamin F deficiency.


2014 ◽  
Vol 4 (1) ◽  
pp. 31-39
Author(s):  
Siwitri Kadarsih

The objective was to get beef that contain unsaturated fatty acids (especially omega 3 and 6), so as to improve intelligence, physical health for those who consume. The study design using CRD with 3 treatments, each treatment used 4 Bali cattle aged approximately 1.5 years. Observations were made 8 weeks. Pasta mixed with ginger provided konsentrat. P1 (control); P2 (6% saponification lemuru fish oil, olive oil 1%; rice bran: 37.30%; corn: 62.70%; KLK: 7%, ginger paste: 100 g); P3 (lemuru fish oil saponification 8%, 2% olive oil; rice bran; 37.30; corn: 62.70%; KLK: 7%, ginger paste: 200 g). Konsentrat given in the morning as much as 1% of the weight of the cattle based on dry matter, while the grass given a minimum of 10% of the weight of livestock observation variables include: fatty acid composition of meat. Data the analyzies qualitative. The results of the study showed that the composition of saturated fatty acids in meat decreased and an increase in unsaturated fatty acids, namely linoleic acid (omega 6) and linolenic acid (omega 3), and deikosapenta deikosaheksa acid.Keywords : 


Sign in / Sign up

Export Citation Format

Share Document