scholarly journals 97 Effects of alkalization treatment on chemical composition and in vitro ruminal fermentation of anaerobically stored rice stover

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 76-76
Author(s):  
Yulin Ma ◽  
Xu Chen ◽  
Jianxin Xiao ◽  
Shuai Liu ◽  
Jingjun Wang ◽  
...  

Abstract The objective of this trial was to evaluate the effects of urea and calcium hydroxide on the chemical composition and in vitro ruminal fermentation of rice stover. Rice stover was stored in polyethylene bags (35 × 25 cm, 350g per bag) with: (i) no additive (CON); (ii) 4% calcium hydroxide (CA, dry matter (DM) basis); (iii) 2.5% urea and 4% calcium hydroxide (UCA, DM basis); and (iv) 9% corn steep liquor and 2.5% urea and 4% calcium hydroxide (CUCA, DM basis). Dry matter were kept at the same level at 55% for all treatments. Totally, 36 bags (4 treatments × 3 store periods × 3 repeats) were prepared and stored at ambient temperature (25 ± 3 °C). The chemical composition was measured at day 7, 10 and 15 after storage. And the in vitro ruminal fermentation was tested in vitro at d 15. Date was subjected to two-way analysis of variance (ANOVA) with the fixed effects of treatments, times and treatments × times by using SPSS 24.0. All alkali treatments reduced neutral detergent fiber (NDF) and acid detergent fiber (ADF) content (P < 0.05), and increased the in vitro DM digestibility (IVDMD) of the rice stover compared with the CON. The in vitro NDF degradability (IVNDFD) and ADF degradability (IVADFD) were increased in UCA and CUCA rice stover (P < 0.05) compared to others. The highest acetic acid (AA), propionic acid (PA), butyric acid (BA), total volatile acids (TVFA) concentrations and 48-h cumulative gas production were observed in CUCA rice stover (P < 0.05). With the delay of storage time, dry matter (DM) and crude protein (CP) were decreased in CA and CUCA groups (P < 0.05). Results in this study suggested that 9% corn steep liquor and 2.5% urea and 4% calcium hydroxide might be an effective treatment combination.

Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1854
Author(s):  
Yulin Ma ◽  
Xu Chen ◽  
Muhammad Zahoor Khan ◽  
Jianxin Xiao ◽  
Shuai Liu ◽  
...  

The current study was conducted to explore the ammoniation treatment effects on the chemical composition and in vitro digestibility of rice straw in Chinese Holsteins. For this purpose, rice straw was stored in polyethylene bags (35 × 25 cm, 350 g per bag) including (i) no additives (RS); (ii) 5% urea (5U, dry matter (DM) basis); (iii) 9% corn steep liquor + 5% urea (9C5U, DM basis); (iv) 9C2.5U; and (v) 9C2.5U + 3% molasses (9C2.5U3M, DM basis). The air-dry matter of the mixture was kept at the same level at 55% for all treatments. Fifteen bags (5 treatments × 3 repeats) were prepared and stored at ambient temperature (25 ± 3 °C). The chemical composition and in vitro digestibility were measured at day 60 after storage. Our analysis revealed that all the four ammoniation treatments improved the in vitro DM and neutral detergent fiber (IVNDFD) digestibility. In addition, all the four ammoniation treatments significantly (P < 0.001) increased the levels of crude protein (CP), gas production (GP), acetic acid (AA), butyric acid (BA) and total volatile fatty acid (TVFA) contents of the rice straw and decreased the neutral detergent fiber (NDF) and acid detergent fiber (ADF) of the rice straw compared to the control. Within four treated groups, the 9C5U treatment was most effective. Finally, we concluded that ammoniation treatments increased the nutritive value of rice straw. In addition the 9C5U treatment could be an effective ammoniation treatment for the better utilization of rice straw.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1205
Author(s):  
Musen Wang ◽  
Fujin Zhang ◽  
Xinxin Zhang ◽  
Ying Yun ◽  
Lei Wang ◽  
...  

The objective of this work was to evaluate the pH, chemical composition, minerals, vitamins, and in vitro rumen fermentation characteristics of silage prepared with lucerne, sweet maize stalk (MS), and their mixtures. Freshly chopped lucerne and MS were combined in ratios of 100:0 (M0, control), 80:20 (M20), 60:40 (M40), 40:60 (M60), 20:80 (M80), and 0:100 (M100) on a fresh matter basis. Each treatment was prepared in triplicate, and a total of eighteen silos were fermented for 65 days. After 65 days of fermentation, the pH values in M0, M20, M40, M60, M80, and M100 silages were 5.47, 4.84, 4.23, 4.13, 3.79, and 3.61, respectively. As the MS proportion in the mixtures increased, silage K, Ca, P, Na, Fe, and Cu concentrations linearly decreased (p < 0.001) and so did vitamins B5 and K1 and α-tocopherol. In vitro rumen dry matter and organic matter degradability, pH, ammonia, total volatile fatty acid, and gas production linearly decreased (p < 0.01), while neutral detergent fiber concentration linearly increased (p < 0.001), with increasing proportion of MS. The in vitro dry matter and organic matter degradability rapidly decreased when the MS percentage was ≥60%. In conclusion, the M40 silage is the most suitable for livestock utilization in local forage production considering the balance of silage pH, nutritional quality, and in vitro ruminal fermentation characteristics.


2017 ◽  
Vol 39 (3) ◽  
pp. 289 ◽  
Author(s):  
Paula Martins Olivo ◽  
Geraldo Tadeu dos Santos ◽  
Luís Carlos Vinhas Ítavo ◽  
Ranulfo Combuca da Silva Junior ◽  
Eduardo Souza Leal ◽  
...  

Agroindustrial co-products are a viable alternative for use in animal nutrition. Tests were conducted using eight different types of co-products and feed to evaluate the chemical composition, in vitro digestibility of dry matter, crude protein and neutral detergent fiber, and gas production by them. The co-products tested were: coffee hulls; pelleted citrus pulp; grape residue; soybean hulls; cottonseed; cassava foliage; and foods usually supplied to ruminants: corn silage and ground corn concentrate. Data of in vitro digestibility of dry matter, crude protein and neutral detergent fiber were tested by analysis of variance using the least square method; the results of gas production were interpreted by a non-linear regression by the Gauss-Newton method; and the effects of treatments were evaluated by the Tukey’s test. The coefficients of in vitro digestibility of dry matter, crude protein and neutral detergent fiber of co-products were different. Gas production was also different between co-products and feeds evaluated for the volume of gas produced from the fast and slow degradation fractions, degradation rate, bacterial colonization time, and the total volume of gas produced. The evaluated co-products exhibited greater in vitro dry matter digestibility compared to corn silage, except for cottonseed, grape residue, and cassava foliage. Co-products showed higher values of in vitro crude protein digestibility compared to corn silage, and a reduced in vitro digestibility of neutral detergent fiber, except for pelleted citrus pulp and soybean hulls. Corn silage produced larger volume of gas from the fast degradation fraction compared to the co-products and corn concentrate. Co-products analyzed had appropriate nutritional characteristics according to the techniques applied and can be included in ruminant diets. 


2019 ◽  
Vol 40 (6Supl2) ◽  
pp. 3223
Author(s):  
Hariany Ferreira Martello ◽  
Nelcino Francisco de Paula ◽  
Bruna Gomes Macedo ◽  
Joanis Tilemahos Zervoudakis ◽  
Danielle Dias Brutti ◽  
...  

The objective of this study was to evaluate the effects of tannins versus Monensin on in vitro ruminal fermentation of a feedlot diet. The treatments were: control (no additives); low tannin (2 mg g DM-1); medium tannin (4 mg g DM-1), high tannin (6 mg g DM-1), and Monensin (0.02 mg g DM-1). The substrate was a feedlot diet composed by hay and concentrate (15:85 w/w; DM basis). Ruminal fluid was obtained from three rumen-cannulated male Santa Inês sheep. In vitro incubations were carried out during four consecutive weeks (run). Gas production (GP) was recorded at 1, 2, 3, 4, 5, 6, 8, 10, 12, 18, 24, 30, 36, 42, 48, 60, 72, 84, and 96 h of incubation. At 48 and 96 h, two bottles per treatment were withdrawn to measure pH, ammonia concentration (NH3), volatile fatty acid (VFA), in vitro dry matter digestibility (IVDMD), and in vitro neutral detergent fiber digestibility (IVNDFD). Addition of tannin or Monensin did not affect (P > 0.05) the kinetics parameters. Tannin supplementation reduced (P < 0.05) the GP at 24 h compared to Monensin. Addition of Monensin decreased (P < 0.05) IVDMD at 96 h and IVNDFD at 48 and 96 h compared to the control. The IVNDFD was lower (P < 0.05) with Monensin than with tannin at 48 and 96 h. The NH3 was lower (P < 0.05) with tannin compared with Monensin. By increasing tannin dosage, NH3 levels changed quadratically (P < 0.05). The inclusion of tannin in vitro reduced the NH3 concentration considerably when used in low dose.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 431-431
Author(s):  
James R Johnson

Abstract In vitro incubations were used to compare fermentation characteristics of corn (uncharacterized hybrid) to 25 sorghum parental lines and hybrids (Clemson University; Richardson Seed Inc., Lubbock, TX; Scott Seed Company, Hereford, TX). Two experiments were conducted as randomized complete block designs using ruminal contents from two ruminally-fistulated steers (blocks). Grains were ground by a 1-mm screen and used as substrates (2 g, dry matter basis) in laboratory fermenters containing strained ruminal contents and bicarbonate buffer. Fermenters were equipped with pressure monitoring devices (ANKOM Technology, Macedon, NY) to quantify gas production as an indicator of microbial digestion. Cultures were incubated for 24 (experiment 1) to 30 hours (experiment 2), and gas production was recorded at 15-minute intervals. Dry matter disappearance was determined, and organic acid concentrations in the spent culture media were analyzed by gas chromatography. Experiment 1 compared corn to 24 sorghum cultivars, and experiment 2 compared corn to six sorghum cultivars, five of which were represented in experiment 1, plus one waxy hybrid. Data were analyzed using mixed models with cultivar as a fixed effect and block as a random effect. For gas production data, time and the interaction between time and cultivar also were used as fixed effects. For both experiments, there was an interaction between cultivar and time (P &lt; 0.0001) for gas production, revealing large differences among cultivars with respect to their relative susceptibility to microbial fermentation. Similarly, dry matter disappearance; production of acetate, propionate, and butyrate; and acetate:propionate varied substantially among cultivars (P &lt; 0.01), and in many cases exceeding measurements obtained with control corn. Sorghum cultivars used in these experiments varied widely in their susceptibility to digestion by ruminal microorganisms, revealing potential for development of hybrids that can compete with corn as energy sources while contributing to improved sustainability of feedlot production.


Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
Kim Margarette C. Nogoy ◽  
Jia Yu ◽  
Young Gyu Song ◽  
Shida Li ◽  
Jong-Wook Chung ◽  
...  

The amaranth plants showed high potential feed value as forage for ruminants. An in-depth study of this plant, particularly in cattle, will help extend its utilization as an alternative protein and fiber feed source in cattle feeding. In this study, the nutrient compositions of three different species of amaranth, Amaranthus caudatus L., Amaranthus cruentus L., and Amaranthus hypochondriacus L.—two varieties for each species, A.ca 74, A.ca 91, A.cu 62, A.cu 66, A. hy 30, and A. hy 48—were evaluated. The in vitro technique was used to evaluate the fermentation characteristics such as total gas production, total volatile fatty acids (VFA) concentration, pH, and ammonia concentration of the rumen fluid. Moreover, the effective degradabilities of dry matter (EDDM) and crude protein (EDCP) of the amaranth forages were determined through in situ bag technique. The amaranth forages: A. caudatus, A. cruentus, and A. hypochondriacus showed better nutritive value than the locally produced forages in Chungcheong province of Korea. The CP of the amaranth ranged from 11.95% to 14.19%, and the neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents ranged from 45.53% to 70.88% and 34.17% to 49.83%, respectively. Among the amaranth varieties, A. hypochondriacus 48 showed the most excellent ruminant feed nutrient quality (CP, 14.19%; NDF, 45.53%; and ADF, 34.17%). The effective degradabilities of dry matter (EDDM; 33–56%) and crude protein EDCP (27–59%) of the amaranth were lower compared to other studies, which could be due to the maturity stage at which the forages were harvested. Nonetheless, A. hypochondriacus 48 showed the highest EDDM (56.73%) and EDCP (59.09%). The different amaranth species did not differ greatly in terms of total VFA concentration or molar proportions, total gas production, or ammonia-N concentration. The high nutrient composition, and highly effective degradability of dry matter and crude protein, coupled with the favorable fermentation characteristics, suggest that the amaranth forages showed good to excellent feed quality for cattle.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 165-165
Author(s):  
Nadira J Espinoza-Rock ◽  
Andrea O Doblado ◽  
Sebastian E Mejia-Turcios ◽  
Evandro Dias ◽  
Michael Sandes ◽  
...  

Abstract A randomized complete block design was used to determine the effects of 4 concentrations of 4 essential oils (EO) on in vitro ruminal fermentation variables. In vitro fermentation consisted of 0.7 g of high concentrate substrate (86.7% DM) and 50 mL of 2:1 buffer:ruminal fluid inoculum incubated for 24 h for each batch (n = 3; separate days) Treatments were arranged as a 4 × 5 factorial. Factors included 4 EO (eugenol, cinnamic aldehyde, anethole, and garlic oil) at 5 concentrations (0, 10, 75, 200, and 400 mg/L of inoculum). Data were analyzed using the MIXED procedure of SAS with the fixed effects of EO, concentration, and their interaction, and random effect of day (block). Batch was considered the experimental unit. There was an interaction (P &lt; 0.001) for total gas production, where a cubic effect (P ≤ 0.041) was observed for eugenol, cinnamic aldehyde, and anethole, and a quadratic effect (P = 0.001) was observed for garlic oil. No interactions (P &gt; 0.05) were observed for in vitro OM digestibility (IVOMD) or CH4 production. There was an effect of EO (P &lt; 0.001) on IVOMD, where eugenol reduced (P ≤ 0.007) digestibility compared with anethole and garlic oil, which promoted the greatest (P ≤ 0.029) IVOMD. Methane production (mmol/g OM fermented) was affected by EO (P &lt; 0.001), where it was decreased (P ≤ 0.001) by garlic oil compared with all other EO. There was an interaction (P &lt; 0.001) for H2S production (µmol/g OM fermented), where it was linearly decreased (P = 0.003) and linearly increased (P &lt; 0.001) as concentrations of eugenol and garlic oil increased, respectively. These EO had contradictory impacts on in vitro ruminal fermentation, thus combining them could potentially improve multiple aspects of in vitro and in vivo fermentation.


2019 ◽  
Vol 49 (7) ◽  
Author(s):  
Zhihao Dong ◽  
Junfeng Li ◽  
Lei Chen ◽  
Siran Wang ◽  
Tao Shao

ABSTRACT: This study was conducted to evaluate the effects of additives on the fermentation characteristics, chemical composition and in vitro digestibility of tetraploid black locust (TBL). The TBL leaves silage was either untreated (control) or treated with 1 × 106 cfu/g FM Lactobacillus plantarum (L), 1% glucose (G), 3% molasses (M), a combination of 1% glucose and Lactobacillus plantarum (L+G), or a combination of 3% molasses and Lactobacillus plantarum (L+M). Fermentation quality, chemical composition and nutrient digestibility were then analyzed. Ethanol and acetic acid concentrations were the dominant fermentation products in all silages except L+M silage. The L, G and L+G treatments failed to influence the fermentation. The M treatment increased (P<0.05) the lactic acid concentration and lowered (P<0.05) the pH when compared with control silage. The best fermentation properties were observed in L+M silage, as indicated by the dominance of lactic acid over ethanol in fermentation products. The M and L+M silages exhibited higher (P<0.05) dry matter, and M silage showed higher residual water-soluble carbohydrates than the control. Ensiling increased (P<0.05) the in vitro dry matter, neutral detergent fiber and acid detergent fiber degradability of TBL. Among the silages, M silage had the highest levels of dry matter, neutral detergent fiber and acid detergent fiber degradability. The obtained results suggested that application of lactic acid bacteria together with 3% molasses could be an effective strategy to prevent the occurrence of ethanol fermentation and improve fermentation quality of TBL silage; addition of fermentable sugars to TBL improves nutrient availability to ruminants.


2014 ◽  
Vol 94 (4) ◽  
pp. 697-704 ◽  
Author(s):  
J. P. Lynch ◽  
D. Prema ◽  
J. D. Van Hamme ◽  
J. S. Church ◽  
K. A. Beauchemin

Lynch, J. P., Prema, D., Van Hamme, J. D., Church, J. S. and Beauchemin, K. A. 2014. Fiber degradability, chemical composition and conservation characteristics of alfalfa haylage ensiled with exogenous fibrolytic enzymes and a ferulic acid esterase-producing inoculant. Can. J. Anim. Sci. 94: 697–704. This study investigated the effects of two fibrolytic enzyme products, applied at baling alone or in combination with a ferulic acid esterase-producing bacterial additive, on the ensilage dynamics, chemical composition and digestibility of alfalfa haylage. Five replicate wrapped bales were produced with one of five treatments, including an untreated control, and one of two fibrolytic enzyme products (EN1 and EN2) applied either alone or in combination with a ferulic-acid producing bacterial additive (FAEI). No effect of treatment was observed on the neutral detergent fiber (NDF) (P=0.889) or acid detergent fiber (ADF) (P=0.065) concentrations of haylage after ensilage, but haylage produced using fibrolytic enzyme products underwent greater (P<0.018) increases in temperature following exposure to aerobic conditions. Haylages produced with fibrolytic enzyme products had a greater (P<0.001) in vitro NDF degradability (NDFD) than untreated haylage. The use of fibrolytic enzymes applied to alfalfa haylage at ensiling increased the NDFD, despite minimal effects on the chemical composition of the herbage. However, the greater aerobic deterioration of fibrolytic enzyme-treated bales indicates higher dry matter losses during aerobic exposure. The use of FAEI with fibrolytic enzymes did not further enhance the effects of fibrolytic-enzyme treatments.


Sign in / Sign up

Export Citation Format

Share Document