scholarly journals How do cryptochromes and UVR8 interact in natural and simulated sunlight?

2019 ◽  
Vol 70 (18) ◽  
pp. 4975-4990 ◽  
Author(s):  
Neha Rai ◽  
Susanne Neugart ◽  
Yan Yan ◽  
Fang Wang ◽  
Sari M Siipola ◽  
...  

AbstractCryptochromes (CRYs) and UV RESISTANCE LOCUS 8 (UVR8) photoreceptors perceive UV-A/blue (315–500 nm) and UV-B (280–315 nm) radiation in plants, respectively. While the roles of CRYs and UVR8 have been studied in separate controlled-environment experiments, little is known about the interaction between these photoreceptors. Here, Arabidopsis wild-type Ler, CRYs and UVR8 photoreceptor mutants (uvr8-2, cry1cry2 and cry1cry2uvr8-2), and a flavonoid biosynthesis-defective mutant (tt4) were grown in a sun simulator. Plants were exposed to filtered radiation for 17 d or for 6 h, to study the effects of blue, UV-A, and UV-B radiation. Both CRYs and UVR8 independently enabled growth and survival of plants under solar levels of UV, while their joint absence was lethal under UV-B. CRYs mediated gene expression under blue light. UVR8 mediated gene expression under UV-B radiation, and in the absence of CRYs, also under UV-A. This negative regulation of UVR8-mediated gene expression by CRYs was also observed for UV-B. The accumulation of flavonoids was also consistent with this interaction between CRYs and UVR8. In conclusion, we provide evidence for an antagonistic interaction between CRYs and UVR8 and a role of UVR8 in UV-A perception.

2020 ◽  
Author(s):  
Neha Rai ◽  
Andrew O’Hara ◽  
Daniel Farkas ◽  
Omid Safronov ◽  
Khuanpiroon Ratanasopa ◽  
...  

AbstractThe photoreceptors UV RESISTANCE LOCUS 8 (UVR8) and CRYPTOCHROMES 1 and 2 (CRYs) play major roles in the perception of UV-B (280–315 nm) and UV-A/blue radiation (315–500 nm), respectively. However, it is poorly understood how they function in sunlight. The roles of UVR8 and CRYs were assessed in a factorial experiment with Arabidopsis thaliana wild-type and photoreceptor mutants exposed to sunlight for 6 h or 12 h under five types of filters with cut-offs in UV and blue-light regions. Transcriptome-wide responses triggered by UV-B and UV-A wavelengths shorter than 350 nm (UV-Asw) required UVR8 whereas those induced by blue and UV-A wavelengths longer than 350 nm (UV-Alw) required CRYs. UVR8 modulated gene expression in response to blue light while lack of CRYs drastically enhanced gene expression in response to UV-B and UV-Asw. These results agree with our estimates of photons absorbed by these photoreceptors in sunlight and with in vitro monomerization of UVR8 by wavelengths up to 335 nm. Motif enrichment analysis predicted complex signaling downstream of UVR8 and CRYs. Our results highlight that it is important to use UV waveband definitions specific to plants’ photomorphogenesis as is routinely done in the visible region.


Antioxidants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 522 ◽  
Author(s):  
Wang ◽  
Xiao ◽  
Huang ◽  
Liu

In this study, cell death induced by the oxidant tert-butylhydroperoxide (tBH) was observed in U2OS cells; this phenotype was rescued by Syntaxin 17 (STX17) knockout (KO) but the mechanism is unknown. STX17 plays dual roles in autophagosome–lysosome fusion and mitochondrial fission. However, the contribution of the two functions of STX17 to apoptosis has not been extensively studied. Here, we sought to dissect the dual roles of STX17 in oxidative-stress-induced apoptosis by taking advantage of STX17 knockout cells and an autophagosome–lysosome fusion defective mutant of STX17. We generated STX17 knockout U2OS cells using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system and the STX17 knockout cells were reconstituted with wild-type STX17 and its autophagosome–lysosome fusion defective mutant. Autophagy was assessed by autophagic flux assay, Monomer red fluorescent protein (mRFP)–GFP–LC3 assay and protease protection assay. Golgi, endoplasmic reticulum (ER)/ER–Golgi intermediate compartment (ERGIC) and mitochondrial dynamics were examined by staining the different indicator proteins. Apoptosis was evaluated by caspase cleavage assay. The general reactive oxygen species (ROS) were detected by flow cytometry. In STX17 complete knockout cells, sealed autophagosomes were efficiently formed but their fusion with lysosomes was less defective. The fusion defect was rescued by wild-type STX17 but not the autophagosome–lysosome fusion defective mutant. No obvious defects in Golgi, ERGIC or ER dynamics were observed. Mitochondria were significantly elongated, supporting a role of STX17 in mitochondria fission and the elongation caused by STX17 KO was reversed by the autophagosome–lysosome fusion defective mutant. The clearance of protein aggregation was compromised, correlating with the autophagy defect but not with mitochondrial dynamics. This study revealed a mixed role of STX17 in autophagy, mitochondrial dynamics and oxidative stress response. STX17 knockout cells were highly resistant to oxidative stress, largely due to the function of STX17 in mitochondrial fission rather than autophagy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anastasia Ricci ◽  
Sara Orazi ◽  
Federica Biancucci ◽  
Mauro Magnani ◽  
Michele Menotta

AbstractAtaxia telangiectasia (AT) is a rare genetic neurodegenerative disease. To date, there is no available cure for the illness, but the use of glucocorticoids has been shown to alleviate the neurological symptoms associated with AT. While studying the effects of dexamethasone (dex) in AT fibroblasts, by chance we observed that the nucleoplasmic Lamin A/C was affected by the drug. In addition to the structural roles of A-type lamins, Lamin A/C has been shown to play a role in the regulation of gene expression and cell cycle progression, and alterations in the LMNA gene is cause of human diseases called laminopathies. Dex was found to improve the nucleoplasmic accumulation of soluble Lamin A/C and was capable of managing the large chromatin Lamin A/C scaffolds contained complex, thus regulating epigenetics in treated cells. In addition, dex modified the interactions of Lamin A/C with its direct partners lamin associated polypeptide (LAP) 2a, Retinoblastoma 1 (pRB) and E2F Transcription Factor 1 (E2F1), regulating local gene expression dependent on E2F1. These effects were differentially observed in both AT and wild type (WT) cells. To our knowledge, this is the first reported evidence of the role of dex in Lamin A/C dynamics in AT cells, and may represent a new area of research regarding the effects of glucocorticoids on AT. Moreover, future investigations could also be extended to healthy subjects or to other pathologies such as laminopathies since glucocorticoids may have other important effects in these contexts as well.


1991 ◽  
Vol 11 (1) ◽  
pp. 47-54
Author(s):  
H Chan ◽  
S Hartung ◽  
M Breindl

We have studied the role of DNA methylation in repression of the murine alpha 1 type I collagen (COL1A1) gene in Mov13 fibroblasts. In Mov13 mice, a retroviral provirus has inserted into the first intron of the COL1A1 gene and blocks its expression at the level of transcriptional initiation. We found that regulatory sequences in the COL1A1 promoter region that are involved in the tissue-specific regulation of the gene are unmethylated in collagen-expressing wild-type fibroblasts and methylated in Mov13 fibroblasts, confirming and extending earlier observations. To directly assess the role of DNA methylation in the repression of COL1A1 gene transcription, we treated Mov13 fibroblasts with the demethylating agent 5-azacytidine. This treatment resulted in a demethylation of the COL1A1 regulatory sequences but failed to activate transcription of the COL1A1 gene. Moreover, the 5-azacytidine treatment induced a transcription-competent chromatin structure in the retroviral sequences but not in the COL1A1 promoter. In DNA transfection and microinjection experiments, we found that the provirus interfered with transcriptional activity of the COL1A1 promoter in Mov13 fibroblasts but not in Xenopus laevis oocytes. In contrast, the wild-type COL1A1 promoter was transcriptionally active in Mov13 fibroblasts. These experiments showed that the COL1A1 promoter is potentially transcriptionally active in the presence of proviral sequences and that Mov13 fibroblasts contain the trans-acting factors required for efficient COL1A1 gene expression. Our results indicate that the provirus insertion in Mov13 can inactivate COL1A1 gene expression at several levels. It prevents the developmentally regulated establishment of a transcription-competent methylation pattern and chromatin structure of the COL1A1 domain and, in the absence of DNA methylation, appears to suppress the COL1A1 promoter in a cell-specific manner, presumably by assuming a dominant chromatin structure that may be incompatible with transcriptional activity of flanking cellular sequences.


Cartilage ◽  
2020 ◽  
pp. 194760352095814
Author(s):  
Austin V. Stone ◽  
Richard F. Loeser ◽  
Michael F. Callahan ◽  
Margaret A. McNulty ◽  
David L. Long ◽  
...  

Objective Meniscus injury and the hypoxia-inducible factor (HIF) pathway are independently linked to osteoarthritis pathogenesis, but the role of the meniscus HIF pathway remains unclear. We sought to identify and evaluate HIF pathway response in normal and osteoarthritic meniscus and to examine the effects of Epas1 (HIF-2α) insufficiency in mice on early osteoarthritis development. Methods Normal and osteoarthritic human meniscus specimens were obtained and used for immunohistochemical evaluation and cell culture studies for the HIF pathway. Meniscus cells were treated with pro-inflammatory stimuli, including interleukins (IL)-1β, IL-6, transforming growth factor (TGF)-α, and fibronectin fragments (FnF). Target genes were also evaluated with HIF-1α and HIF-2α (Epas1) overexpression and knockdown. Wild-type ( n = 36) and Epas1+/− ( n = 30) heterozygous mice underwent destabilization of the medial meniscus (DMM) surgery and were evaluated at 2 and 4 weeks postoperatively for osteoarthritis development using histology. Results HIF-1α and HIF-2α immunostaining and gene expression did not differ between normal and osteoarthritic meniscus. While pro-inflammatory stimulation significantly increased both catabolic and anabolic gene expression in the meniscus, HIF-1α and Epas1 expression levels were not significantly altered. Epas1 overexpression significantly increased Col2a1 expression. Both wild-type and Epas1+/− mice developed osteoarthritis following DMM surgery. There were no significant differences between genotypes at either time point. Conclusion The HIF pathway is likely not responsible for osteoarthritic changes in the human meniscus. Additionally, Epas1 insufficiency does not protect against osteoarthritis development in the mouse at early time points after DMM surgery. The HIF pathway may be more important for protection against catabolic stress.


2019 ◽  
Vol 317 (1) ◽  
pp. H168-H180 ◽  
Author(s):  
Ali M. Tabish ◽  
Mohammed Arif ◽  
Taejeong Song ◽  
Zaher Elbeck ◽  
Richard C. Becker ◽  
...  

In this study, we investigated the role of DNA methylation [5-methylcytosine (5mC)] and 5-hydroxymethylcytosine (5hmC), epigenetic modifications that regulate gene activity, in dilated cardiomyopathy (DCM). A MYBPC3 mutant mouse model of DCM was compared with wild type and used to profile genomic 5mC and 5hmC changes by Chip-seq, and gene expression levels were analyzed by RNA-seq. Both 5mC-altered genes (957) and 5hmC-altered genes (2,022) were identified in DCM hearts. Diverse gene ontology and KEGG pathways were enriched for DCM phenotypes, such as inflammation, tissue fibrosis, cell death, cardiac remodeling, cardiomyocyte growth, and differentiation, as well as sarcomere structure. Hierarchical clustering of mapped genes affected by 5mC and 5hmC clearly differentiated DCM from wild-type phenotype. Based on these data, we propose that genomewide 5mC and 5hmC contents may play a major role in DCM pathogenesis. NEW & NOTEWORTHY Our data demonstrate that development of dilated cardiomyopathy in mice is associated with significant epigenetic changes, specifically in intronic regions, which, when combined with gene expression profiling data, highlight key signaling pathways involved in pathological cardiac remodeling and heart contractile dysfunction.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3526-3526
Author(s):  
Xavier Leleu ◽  
Lian Xu ◽  
Zachary R. Hunter ◽  
Sophia Adamia ◽  
Evdoxia Hatjiharissi ◽  
...  

Abstract Background. Several TNF family members (CD40L and BAFF/BLYS) have been implicated in Waldenstrom’s Macroglobulinemia (WM) cell growth and survival. More recently, abnormalities in the APRIL-TACI pathway have been demonstrated by us in WM cells (Hunter, ASH2006, #228). TRAFs (TNFR-associated factor) are a family of adaptor proteins that mediate signal transduction from multiple members of the TNF receptor superfamily. In particular, TRAFs facilitate pro-apoptotic signaling from the TACI receptor, and TRAF2 is of importance among the TRAF adapter proteins since this protein is required for TNF-alpha-mediated activation of SAPK/JNK MAPK known to be involved in drug-induced death of tumor B cells. We therefore examined the role of TRAF2 in WM growth and survival. Method. We investigated TRAF2, 3 and 5 gene expression in WM patient bone marrow (BM) CD19+ cells and cell lines (BCWM.1, WSU-WM) and compared their expression to BM CD19+ cells from healthy donors. Expression of human TRAF transcripts were determined using real time quantitative RT-PCR (qPCR) based on TaqMan fluorescence methodology. To evaluate the role of TRAF2, a knockdown model was prepared in BL2126 B-cells and BCWM.1 WM cells using electroporation, with resulted ≥50% knockdown efficiency using RT-PCR and immunoblotting. Results. We found that TRAF3 and 5 gene expression was higher in WM versus healthy donors, while TRAF2 expression was lower in 8/13 (60%) patients, using qPCR. TRAFs gene expression did not correlate with tumor burden or WM prognostic markers. We next sought to understand the biological sequelae of TRAF2 deficiency in BL2126 and BCWM.1 cells and found that TRAF2 knockdown induced increased survival at 72 hours in both cell lines. We next studied sequence analysis of 20 WM patients CD19+ BM cells to determine whether there was a TRAF2 genomic alteration, and found heterozygous early termination mutation in exon 5 in 1 (5%) patient. Conclusion. Our data demonstrate that TRAF2 is a commonly dysregulated TNF family adapter protein in patients with WM, with important consequences in WM cell growth and survival.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. sci-13-sci-13 ◽  
Author(s):  
Kotaro Funato ◽  
David W. Sternberg

Abstract Significant advances have been made towards understanding the molecular pathogenesis and prognostic determinants in acute myelogenous leukemia of normal karytype (AMLNK). One of these, somatic mutation within exon 12 of the nucleophosmin gene (NPM1), is present in 50–60% of AML-NK and has been associated with favorable response to induction chemotherapy, overall survival, and event-free survival, but only in the absence of FLT3-ITD mutation. In addition to exon 12 mutation, NPM1 is disrupted in hematologic malignancies through fusion to partner proteins such as the anaplastic lymphoma kinase (ALK), myeloid leukemia factor 1 in myelodysplasia (MLF1), and retinoic acid receptor-α (RARα). The NPM1 gene encodes a 37-kDa protein that is predominantly localized to the nucleolus but also shuttles to the nucleoplasm and cytoplasm. A strong association (perhaps a 100% correlation) exists between NPM1 mutation and aberrant localization of the nucleophosmin protein in the cytoplasm. This mislocalization of nucleophosmin has been attributed to the loss of tryptophan residues 288 and 290 (or 290 only) in the carboxy terminus of this protein, and these motifs are required for nucleolar localization of nucleophosmin. Importantly, the NPM1 mutation also creates a de novo nuclear export signal within nucleophosmin. The functional role of wild-type nucleophosmin has been implicated in the regulation of cell growth control through p14ARF and p53 interactions, ribosome biogenesis, centrosome duplication, as well as other functions. Pediatric AML samples with NPM1 mutation were reported to have a distinct gene expression signature, including altered expression of homeobox (HOX) genes, and adult AML specimens carrying mutant NPM1 were reported to have a distinct microRNA expression signature. In addition to alterations in the expression of mRNA and microRNA species, the critical function of nucleophosmin in ribosome biogenesis, as well as its reported association with poly(A)(+) mRNA’s in vivo, suggests that mutant NPM1 could disrupt gene expression through aberrant translational control. Regulators of translational initiation can be rate-limiting for neoplasia in animal models, and we evaluated the hypothesis that cytoplasmic nucleophosmin promotes leukemogenesis by similarly altering the translational control of gene expression. Here, we present data to show that enforced expression of mutant nucleophosmin significantly alters the partitioning of mRNA’s to polyribosomes. Polyribosomal extracts were purified from cells that express wild-type or mutant nucleophosmin, RNA was extracted from this material, and the global profile of mRNA in these fractions was evaluated by gene expression microarray analysis. Enforced expression of cytoplasmic nucleophosmin significantly altered mRNA recruitment to polysomes. Moreover, we found common features in the polysome signature of cells expressing mutant NPM or the NPM-ALK fusion, suggesting that cytoplasmic NPM and the NPM-ALK fusion might disrupt translational initiation through partially overlapping mechanisms. These findings suggest that mutant nucleophosmin can perturb mRNA translational initiation in concert with other molecular mechanisms in the pathogenesis of AML-NK.


2006 ◽  
Vol 188 (9) ◽  
pp. 3246-3256 ◽  
Author(s):  
Poorna Viswanathan ◽  
Mitchell Singer ◽  
Lee Kroos

ABSTRACT Starvation-induced development of Myxococcus xanthus is an excellent model for biofilm formation because it involves cell-cell signaling to coordinate formation of multicellular mounds, gene expression, and cellular differentiation into spores. The role of σD, an alternative σ factor important for viability in stationary phase and for stress responses, was investigated during development by measuring signal production, gene expression, and sporulation of a sigD null mutant alone and upon codevelopment with wild-type cells or signaling mutants. The sigD mutant responded to starvation by inducing (p)ppGpp synthesis normally but was impaired for production of A-signal, an early cell density signal, and for production of the morphogenetic C-signal. Induction of early developmental genes was greatly reduced, and expression of those that depend on A-signal was not restored by codevelopment with wild-type cells, indicating that σD is needed for cellular responses to A-signal. Despite these early developmental defects, the sigD mutant responded to C-signal supplied by codeveloping wild-type cells by inducing a subset of late developmental genes. σD RNA polymerase is dispensable for transcription of this subset, but a distinct regulatory class, which includes genes essential for sporulation, requires σD RNA polymerase or a gene under its control, cell autonomously. The level of sigD transcript in a relA mutant during growth is much lower than in wild-type cells, suggesting that (p)ppGpp positively regulates sigD transcription in growing cells. The sigD transcript level drops in wild-type cells after 20 min of starvation and remains low after 40 min but rises in a relA mutant after 40 min, suggesting that (p)ppGpp negatively regulates sigD transcription early in development. We conclude that σD synthesized during growth occupies a position near the top of a regulatory hierarchy governing M. xanthus development, analogous to σ factors that control biofilm formation of other bacteria.


Microbiology ◽  
2004 ◽  
Vol 150 (4) ◽  
pp. 1079-1084 ◽  
Author(s):  
Bryn Edwards-Jones ◽  
Paul R. Langford ◽  
J. Simon Kroll ◽  
Jun Yu

Previously, the authors have shown that inactivation of Shigella flexneri yihE, a gene of unknown function upstream of dsbA, which encodes a periplasmic disulphide catalyst, results in a global change of gene expression. Among the severely down-regulated genes are galETKM, suggesting that the yihE mutant, Sh54, may inefficiently produce the UDP-glucose and UDP-galactose required for LPS synthesis. This paper demonstrates that LPS synthesis in Sh54 is impaired. As a result, Sh54 is unable to polymerize host cell actin, due to aberrant localization of IcsA, or to cause keratoconjunctivitis in guinea pigs. Furthermore, Sh54 is more sensitive to some antimicrobial agents, and exhibits epithelial cytotoxicity characteristic of neither wild-type nor dsbA mutants. Supplying galETK in trans restores LPS synthesis and corrects all the defects. Hence, it is clear that the Shigella yihE gene is important not only in regulating global gene expression, as shown previously, but also in virulence through LPS synthesis via regulating the expression of the galETK operon.


Sign in / Sign up

Export Citation Format

Share Document